Wireless Network Security and Privacy

## Wireless Sensor Network Security

Introduction to wireless sensor networks; Key establishment; Node replication attack and detection;

## Sensor System Types – Smart-Dust/Motes

- First introduced in late 90's by groups at UCB/UCLA/UMich
  - Published at Mobicom/SOSP conferences
  - An integrated computing, communication and sensing platform consisting of millimeter-scale sensor nodes
  - Small enough to remain suspended in air, buoyed by air currents, capable of sensing and communication for hours or days
- Small, resource limited devices
  - CPU, disk, power, bandwidth, etc.
  - Different from vehicular sensing platform where nodes are not energy-starved
  - Since then, progress in WSN research has yielded major advances toward the original WSN vision

2

# Wireless Sensor Networks (WSNs)

- Consist of a large number of small, cheap, and resource-constrained sensors
- Can be easily deployed in large scale to sense various physical environments



- Networking
  - Sensor-to-sink communication (opt. sink-tosensors)
- Data sensing method
  - Periodic sensing
  - Event driven
  - Query based = on-demand
- On-line sink
  - Real-time off-loading of data

Online Sink

# **Application Areas**

- Military and homeland security
- Industrial sensing, Traffic control
- Environment & Habitat monitoring







# Example Application: Parking Space Finder

- A distributed database maintains
  - Spot availability data
  - Address of parking spot
  - Meter description
  - Historical availability data
- Query: Where is the cheapest empty parking spot near Great Hall?
  - Returns list of spaces, details on their meters



## More Example Applications



Anti-poaching WSN in a national park tracking/recording firearm discharge locations



 WSN along an international border monitoring sound and vibration produced by illegal border crossings

# Security Requirements in WSNs

- Security is critical to the success of WSN applications!
- Major security requirements in WSNs:
  - Authenticity
    - Enable a sensor to make sure the identities of its communicating parties
  - Integrity
    - Ensures a message being transferred is not corrupted
  - Availability
    - Ensures the survivability of network services
    - Can happen at any layer of sensor networks
  - Confidentiality
    - Ensures data secrecy

# Security Challenges in WSNs

- Resource & network constraints:
  - Energy, memory, communication, computation, nontamper resistant,...
    - Limited energy (battery-powered)
    - Limited computation (4MHz 8-bit)
    - Limited memory (512 bytes)
    - Limited code size(8 Kbytes)
    - Limited communication(30 byte packets)
    - Energy consuming communication
  - Non-tamper resistant,...
  - Wireless medium, infrastructureless, large scale,...
- Major challenges for security design:
  - Efficiency, lightweight, scalability, DoS resilience,...
  - Balance among these competing and even conflicting requirements

## Security Research Efforts so far focus on:

- A flurry of research results appeared in early 2000-s addressing a number of WSN security issues:
  - Key management, secure routing, DoS attacks, clone attacks, …
- Solving security problems not specific to WSNs
  - Aiming at miniaturizations of security functionalities (e.g., SPINS, topic today)
- Solving security problems unique to WSNs
  - Clone detection (topic today)
  - Secure aggregation
  - Secure statistical sampling

Wireless Network Security and Privacy

# **SPINS: Security Protocols for Sensor Networks**

#### Authors:

- Adrian Perrig,
- Robert Szewczyk
- Victor Wen
- David Culler
- J.D.Tygar

### Security Goals

- Data Authentication
- Data Confidentiality
- Data Integrity
- Data Freshness
  - Weak Freshness
    - Partial message ordering, no delay information
    - Useful for sensor measurements
  - Strong Freshness
    - Total ordering on req-res pair, delay estimation
    - Useful for time synchronization

## **Building Blocks**

#### SNEP

- Sensor Network Encryption Protocol
- Secures point-to-point communication
- μTESLA
  - Micro Timed Efficient Stream Loss-tolerant Authentication
  - Provides broadcast authentication

- Communication patterns
  - -Node to base station (e.g. sensor readings)
  - -Base station to node (e.g. specific requests)
  - -Base station to all nodes
- Base Station
  - -Sufficient memory, power
  - -Shares secret key with each node
- Node
  - -Limited resources, limited trust



### Notation

| A, B                     | Principals( nodes)                                                 |
|--------------------------|--------------------------------------------------------------------|
| N <sub>A</sub>           | Nonce generated by A                                               |
| C <sub>A</sub>           | Counter generated by A                                             |
| Х <sub>АВ</sub>          | Master secret key between A and B<br>( no direction information)   |
| K <sub>AB</sub>          | Secret encryption key between A and B (depends on direction)       |
| K' <sub>AB</sub>         | Secret MAC key between A and B (depends on direction)              |
| $\{M\}_{KAB}$            | Encryption of message M with K <sub>AB</sub>                       |
| ${M}_{<_{KAB,IV>}}$      | Encryption of message M using key KAB and initialization vector IV |
| MAC(K' <sub>AB</sub> ,M) | Message authentication code (MAC) of M                             |

### SNEP

- Data Confidentiality (Semantic Security)
- Data Authentication
- Replay Protection
- Weak Freshness
- Low Communication Overhead

### Key Generation /Setup



- Nodes and base station share a master key pre-deployment
- Other keys are bootstrapped from the master key:
  - Encryption key
  - Message Authentication code key
  - Random number generator key

### Authentication, Confidentiality



- Without encryption can have only authentication
- For encrypted messages, the counter is included in the MAC
- Base station keeps current counter for every node



- Nonce generated randomly
- Sender includes Nonce with request
- Responder include nonce in MAC, but not in reply

### **Counter Exchange Protocol**

Bootstrapping counter values



To synchronize:

$$\begin{array}{lll} A \rightarrow B & : & N_A \\ B \rightarrow A & : & C_B, \ \mathsf{MAC}(K'_{BA}, N_A \mid \mid C_B). \end{array}$$

### µTESLA : Authenticated Broadcast

- TESLA : efficient source authentication in multicast for wired networks.
- Problems with TESLA

Digital Signature for initial packet authentication
µTESLA uses only symmetric mechanism
Overhead of at least 16 bytes per packet (8-byte MAC and key)
µTESLA discloses key once per epoch
One way key chain is too big
µTESLA restricts number of authenticated senders
Packet (8-byte MAC and key)
Packe



- Main idea: One-way key chains
- K<sub>0</sub> is initial commitment to chain, known by the sensor
- Base station gives K<sub>0</sub> to all nodes

# **µTESLA Quick Overview I**

- Keys disclosed 2 time intervals after use
- Receiver knows authentic K3
- Authentication of P1:MAC(K5,P1)



# **µTESLA Quick Overview II**

Perfect robustness to packet loss

#### **Authenticate K5**



#### **Verify MACs**

### **µTESLA** Properties

- Asymmetry from delayed key disclosure
- Self-authenticating keys
- Requires loose time synchronization
- Low overhead (1 MAC)
  - Communication (same as SNEP)
  - Computation (~ 2 MAC computations)
- Independent of number of receivers

### **Applications built from SPINS**

- Authenticated Routing
- Node to Node Key Agreement (using base station as the trusted party)
  - $A \rightarrow B$ :  $N_A$ , A
  - $B \rightarrow S:$   $N_A, N_B, A, B, MAC(K'_{BS}, N_A || N_B || A || B)$
  - $S \rightarrow A: \{SK_{AB}\}_{KSA}, MAC(K'_{SA}, N_A ||A|| \{SK_{AB}\}K_{SA})$
  - $S \rightarrow B$ : {SK<sub>AB</sub>}<sub>KSB</sub>, MAC(K'<sub>SB</sub>, N<sub>B</sub> || B || {SK<sub>AB</sub>}K<sub>SB</sub>)

#### Advantages

- Strong security protocols affordable
  - First broadcast authentication
- Low security overhead
  - Computation, memory, communication
- Apply to future sensor networks
  - -Energy limitations persist
  - -Tendency to use minimal hardware
  - Base protocol for more sophisticated security services

Wireless Network Security and Privacy

## Distributed Detection of Node Replication Attacks in Sensor Networks

## Sybil vs replication attacks



- Replication Attacks
  - Multiple nodes have the same identification
  - Capturing many nodes is hard
  - Instead, capture one node and copy it



## **Replication is Easy**

- Only need to capture one node
- Offline attack to extract node's secrets
- Transfer secrets to generic nodes
- Deploy clones



- Clones know everything compromised node knew
- Adversary can ...
  - Inject false data or suppress legitimate data
  - Spread blame for abnormal behavior
  - Revoke legitimate nodes using aggregated voting
  - Monitor communication

## **Detection Approaches**

#### Centralized Detection

A key-management scheme for distributed sensor networks, by L. Eschenauer, V. Gligor, ACM Conference on Computer and Communication Security (CCS) 2002

#### Localized Detection

Random key predistribution schemes for sensor networks, by H. Chan, A. Perrig, D. Song, IEEE Symposium on Security and Privacy 2003

#### Distributed Detection

*Distributed Detection of Node Replication Attacks in Sensor Networks*, by Bryan Parno, Adrian Perrig, Virgil Gligor, IEEE Symposium on Security and Privacy 2005

# **Centralized Detection**

A key-management scheme for distributed sensor networks, by L. Eschenauer, V. Gligor, ACM Conference on Computer and Communication Security (CCS) 2002

- Each node sends neighbor list to a central base station
  - Base station searches lists for duplicates
  - Disadvantages
    - Some applications may not use base stations
    - Single point of failure
    - Exhausts nodes near base station (and makes them attack targets)

# Localized Detection

Random key predistribution schemes for sensor networks, by H. Chan, A. Perrig, D. Song, IEEE Symposium on Security and Privacy 2003

- Neighborhoods use local voting protocols to detect replicas
- Disadvantage
  - Replication is a global event that cannot be detected in a purely local fashion

# **Distributed Detection**

Distributed Detection of Node Replication Attacks in Sensor Networks, by Bryan Parno, Adrian Perrig, Virgil Gligor, IEEE Symposium on Security and Privacy 2005

- Goals:
  - Detect replication with high probability
  - After protocol concludes, legitimate nodes have revoked replicas
  - Secure against adaptive adversary
    - Unpredictable to adversary
    - No central points of failure
  - Minimize communication overhead
  - Two Preliminary Schemes
    - Node-to-Network Broadcast
    - Deterministic Multicast
  - Two Primary Schemes
    - Randomized Multicast
    - Line Select Multicast

## **Distributed Detection**

### Assumptions

- Public key infrastructure
  - Occasional elliptic curve cryptography is reasonable
  - Can be replaced with symmetric mechanisms
- Network employs geographic routing
- Nodes are primarily stationary

# Node-to-Network Broadcast (1)

- Each node uses an authenticated broadcast message to flood the network with its location information.
- Each node stores the location information for its neighbors.

If conflicting claim is detected, the offending node is revoked.

# Node-to-Network Broadcast (2)

- Simple and achieve 100% detection rate
- Each node stores location information for its d neighbors.
- Total communication cost is O(n<sup>2</sup>)

# Deterministic Multicast (1)

- Each node broadcasts its location to its neighbors.
  - Neighbors forward location claim to a subset of the nodes "witnesses":  $F(\alpha) = W_1, W_2, ..., W_g$ 
    - Coupon Collector Problem: each node only needs to select (glng)/d random destinations from the set of witnesses.
  - Once the witness detects a location conflict, it revokes the node by flooding.

# Deterministic Multicast (2)

- Average path length is  $O(\sqrt{n})$ , then communication cost is  $O(\frac{g \ln g \sqrt{n}}{d})$
- F is a deterministic function, an adversary can also determine all witness nodes.
  - Better security guarantee, larger g -> larger communication cost

# Primary Approaches Overview

### Step 1: Announce locations

- Each node signs and broadcasts its location to neighbors
  - Location = (x,y), virtual coordinates, or neighbor list
- Nodes must participate or neighbors will blacklist them

### Step 2: Detect replicas

- Location claims are sent to "witness" nodes by neighbors
- Ensures at least one "witness" node receives two conflicting location claims

### Step 3: Revoke replicas

- Witness floods network with conflicting location claims
- Signatures prevent spoofing or framing

# Randomized Multicast Protocol

- Each node signs and broadcasts its location to neighbors
- Each neighbor forwards location to "witness" nodes
  - Witness chosen at random by selecting random geographic point and forwarding message to node closest to the point
  - Each neighbor selects  $\sqrt{\mathbf{n}}_{\mathbf{d}}$  witnesses for a total of points
- Birthday Paradox implies location claims from a cloned node and its clone will collide with high probability
- Conflicting location claims are evidence for revoking clones
- Signatures prevent forgery of location claims

# **Randomized Multicast Detection**



# Randomized Multicast Analysis

High probability of detection

$$P_{Detect} \geq 1 - e^{\frac{-w^2 R}{n}}$$

- 2 replicas (R=2), w = n,  $P_{Detect} \ge 95\%$ ,

- Decentralized and randomized
- Moderate communication overhead
  - Each node's location sent to n witnesses
  - Path between two random points in the network is O( n) hops on average
  - Results in O(n) message hops per node
  - Total O(n<sup>2</sup>)

# Line-Selected Multicast Protocol

- In a sensor network, nodes route data as well as collect it
- Again, neighbors forward location claim to "witness" nodes
- Each intermediate node checks for a conflict and forwards the location claim
- If any two "lines" intersect, the conflicting location claims provide evidence for revoking clones

# **Line-Selected Multicast Detection**



# Line-Selected Multicast Analysis

- High probability of intersection for two randomly drawn lines in square area
  - Only need a constant number of lines (e.g. for 5 lines/node,  $P_{Detect} \ge 95\%$ )
- Decentralized and randomized
- Minimal communication
  - Line segments  $\sqrt[p]{n}$  n) on average
  - Only requires Q( n) message hops per node
  - Total: O(n<sup>3/2</sup>)

# Conclusion

- Distributed detection solutions seem more reasonable
- Still best communication overhead is O(n<sup>3/2</sup>)