Mobile Device and Wireless Network Security

Pervasive Computing Security: Secure Pairing

Motivation;

Device pairing schemes for various devices

Motivation

- Device Paring Schemes
 - Resurrecting Duckling
 - Talking to Strangers
 - Visual Out-of-Band Channels
 - Seeing-is-believing
 - Audio Out-of-Band Channels
 - Proximity-Based Approaches
 - Accelerometer-Based Approaches
 - Biometrics-Based Approaches

What is Pervasive Computing?

- A.k.a. ubiquitous computing
- Technology View
 - Computers everywhere embedded into fridges, washing machines, door locks, cars, furniture, people
 - \rightarrow intelligent environment
 - Mobile portable computing devices
 - Wireless communication seamless mobile/fixed
- User View
 - Invisible implicit interaction with your environment
 - Augmenting human abilities in context of tasks
- Ubiquitous = mobile computing + intelligent environment

Ubiquitous Electronics

Pervasive Computing Security: Secure Paring

Ubiquitous Electronics

- More and more devices every day
 - Varying size and capabilities
 - Varying connection methods (e.g. Cable, Bluetooth, etc)
 - Varying user interface (rich, moderate and poor)
- Spontaneous method of interaction
- Increasing Mobility in devices
- Frequent associations and disassociations
 - e.g. pairing of Bluetooth enable headset with mobile phone or MP3 player, pairing IR remote with laptop, etc.

Ubiquitous Electronics

- More devices every day
- More device interaction
- → Too many connections!

Go Wireless!

- 802.11, Bluetooth, infrared, Zigbee, 3G, ...
- Cable replacement
 - Computer to printer
 - MP3 player to computer
 - Cell phone to laptop
 - Etc...
- Introduces a problem

Man in the Middle!

- Attacker can easily control communication between wireless devices
- More devices == bigger threat

Solution?

- Communication must be authenticated
 - To rule out man-in-the-middle
 - Need to bootstrap secret in order to have private communication
 - Reduced problem: key setup between communicating devices or device paring

Secure pairing of personal devices

- Pairing: setup of association and security contexts for subsequent communication. e.g.:
 - Pairing a bluetooth phone and a headset
 - Wireless printer and a PAD
 - Enrolling a phone or PC into a home WLAN
 - More instances to come: Wireless USB, WiMedia

Recall in "Lecture 3: the Security of Existing Wireless Networks" how Bluetooth users initiate secure communication?

Bluetooth

- Short-range communications between nearby devices
 - A mobile phone and a head set, a laptop and a mouse, or a computer and a printer, etc.
 - Only wireless stations
- Master-slave principle
 - One master, up to 7 slaves
- Security issues:
 - Authentication of the devices to each other
 - Confidential channel

Bluetooth – initialization key setup

When two devices communicate for the first time:

Bluetooth Pairing

Problem we are going to tackle today ...

- Setting up a security association (authenticated secure communication) where:
 - No prior context exists (no PKI, common TTPs, key servers, shared secrets, etc.)

Ordinary non-expert users

- Cost-sensitive commodity devices varying in device capabilities
 - Communication channels
 - User-interfaces
 - Power and computational resources
 - Sensing technology, etc.

Today's tasks:

- 1. To study multiple schemes
- 2. To explore more possibilities, if possible

Let's try...

Let's try...

Eve can impersonate either party!

Shows how to agree on a secret where none existed...

Public values: large prime p, generator g Alice has secret value a, Bob has secret b

1.	$A \rightarrow B$:	g ^a mod p
2.	$B \rightarrow A$:	g ^b mod p
3.	Bob does:	$(g^{a} \mod p)^{b} \mod p = g^{ab} \mod p$
4.	Alice does:	$(g^b \mod p)^a \mod p = g^{ab} \mod p$

Eve <u>cannot</u> compute g^{ab} mod p So, are we done yet?

Problem: Man-in-the-Middle (MitM) Attacks

Mallory (M) can impersonate Alice to Bob, and Bob to Alice!

Why? No authentication...

Man-in-the-Middle (MitM) Attacks

Mallory controls the communication!

How Serious are MitM Attacks?

- Wireless communication is "*invisible"* or <u>human-imperceptible</u>
 - People can't tell which devices are "talking"
 - A rogue device might not be "visible" or identifiable as such
- A neighbor can easily execute an MitM attack
 - If neighbor has a faster computer, it can easily respond faster than the legitimate device(s)
 - Meanwhile, legitimate device(s) may also be "silenced" by DoS
- Easy to mount with high success rate!

Mechanisms should be intuitive

ireless Network Setup Wizard	SSID? W	/PA?
Give your network a name, using up to 32 characters.		de!)
Network name (SSID):	Which E	61?
 Automatically assign a network key (recommended) To prevent outsiders from accessing your network, Windows will automatically assign a secure key (also called a WEP or WPA key) to your network. 		
C Manually assign a network key Use this option if you would prefer to create your own key, or add a new device to your existing wireless networking using an old key.		G Paired devices
Use WPA encryption instead of WEP (WPA is stronger than WEP but not all devices are compatible with WPA)	▼ Paired devices	Devices found:
< Cancel r Cancel r	4" Logitech HS03 V04	 Nokia E61 Nokia E61
	Bluetooth Bluetooth Passcode for Nokia LD-1W:	My Nokia Nokia E61
They are not for all devices as well!	Cancel	Select Cancel

	Using the Fl	uhrer, Man to Brea	tin, and Shamir Attack k WEP				
August 6, 2001							
			<i>ং</i> শ্য				
Ada Ric astub	m Stubblefield ce University ble@cs.rice.edu	John Ioannic AT&T Lab {ji,r	Cracking the Bluetooth PIN*				
School Tel Aviv U shakedy@en				Electrico versity, R cau.ac.ii	al I Ram 1,		
	IEEE P802.11 Wireless LANs					Security Weaknesses in Blue	tooth
Da	Unsafe at any key size; An analysis of the WEP encapsulation Date: Oct 27, 2000 Author: Jesse R. Walker Intel Corporation 2211 NE 25 th Avenue Hillsboro, Oregon 97124 Phone: +1 503 712 1849 Fax: +1 503 264 4843 e-Mail: jesse.walker@intel.com			or le-	n >-	Markus Jakobsson and Susanne Wetzel Lucent Technologies - Bell Labs Information Sciences Research Center Murray Hill, NJ 07974 USA	
Au						{markusj,sgwetzel}@research.bell-labs. Abstract. We point to three types of potential vulne Bluetooth standard, version 1.0B. The first vulnerabilit system to an attack in which an adversary under certain is able to determine the key exchanged by two victime	com rabilities in the ty opens up the n circumstances devices, making

- Two (initial) problems to solve
 - Discovery: finding the other device and likely to establish an insecure channel.
 - Authenticated key agreement: setting up cryptographic keys for subsequent communication
- Assumption: Peer devices are physically identifiable
- Idea:
 - 1. Use a human-perceivable (**out-of-band or OOB**) channel to transport <u>authenticated</u> information (e.g. checksum of the public keys, or public key itself)

Lecture outline

Motivation

- Device Paring Schemes
 - Resurrecting Duckling
 - Talking to Strangers
 - Visual Out-of-Band Channels
 - Seeing-is-believing
 - Audio Out-of-Band Channels
 - Accelerometer-Based Approaches
 - Biometrics-Based Approaches
 - Others

We want to explore a spectrum of solutions targeting embedded devices with varied capabilities.

Resurrecting Duckling

F. Stajano and R. Anderson, IWSP '99

- Problem: how to set up keys in a ubiquitous computing environment?
 - Devices use wireless communication
- Target scenarios
 - modern home with multiple remotely controlled devices
 - DVD, VHS, HiFi, doors, air condition, lights, alarm, ...
 - modern hospital
 - mobile personal assistants and medical devices, such as thermometers, blood pressure meters, ...
- Common in these scenarios
 - transient associations between devices
 - physical contact is possible for initialization purposes

Resurrecting Duckling

imprinting

Konrad Lorenz(1903-1989)

The Nobel-winning investigator of animal behavior

Described how a goose hatchling assumes that the first moving object it sees must be its mother.

The Resurrecting Duckling

- Solution: set up keys using trusted communication channel
 - No cryptographic keys to setup this channel
 - Physical contact establishes a secure channel
 - E.g., a simple wire

The *resurrecting duckling* Security Policy

- At the beginning, each device has an empty *soul*
- Each empty device accepts the first device to which it is physically connected as its master (imprinting)
- During the physical contact, a device key is established
- The master uses the device key to execute commands on the device, including the *suicide* command
- After suicide, the device returns to its empty state and it is ready to be imprinted again
- A new imprinting by another mother is possible: reverse metempsychosis

Summary – Resurrecting Duckling

- Two state device (duckling)
- Can be "imprinted" multiple times (device ownership)
- Mother gives "life" via physical contact
 - Establishes shared secret
 - Rules out man-in-the-middle
 - Very convenient for user

Caveats:

- Interface unavailable in commodity devices
- Awkward cables

Lecture outline

Motivation

Device Paring Schemes

- Resurrecting Duckling
- Talking to Strangers
- Visual Out-of-Band Channels
 - Seeing-is-believing
- Audio Out-of-Band Channels
- Proximity-Based Approaches
- Accelerometer-Based Approaches
- Biometrics-Based Approaches

"Talking to Strangers"

Balfanz, et al. NDSS '02

- Addresses practical shortcomings of Duckling
 - Devices have no interfaces for physical contact
 - Cables are cumbersome
- Propose Infra-red as a "Location-Limited Side Channel"
 - Which human operators can precisely control which devices are talking with each other
 - Impossible for an attacker to transmit in that channel
 - Assumed to be immune to MitM attack
 - Many of today's (yesterday's) devices equipped with IR

Talking to Strangers

Talking to Strangers

- Pros
 - Works(-ed) on many commodity devices
 - Eliminate physical contact
 - Location-limited side channel
 - Restricts location of attacker
- Cons
 - Most users do not know where their IR port is
 - Most devices require IR to be explicitly turned on
 - IR is invisible, attacker may still be able to mount MitM attack
 - Infrared not available in all devices

Lecture outline

Motivation

Device Paring Schemes

- Resurrecting Duckling
- Talking to Strangers
- Visual Out-of-Band Channels
 - Seeing-is-believing
- Audio Out-of-Band Channels
- Proximity-Based Approaches
- Accelerometer-Based Approaches
- Biometrics-Based Approaches

Seeing-is-Believing (SiB)

McCune, et al. IEEE Security & Privacy '05

- Difficult to achieve demonstrative identification of devices communicating wirelessly with no prior context
- Prior work proposes the use of a location-limited sidechannel to authenticate devices
 - Infrared, ultrasound, physical contact
- Proposals to-date too cumbersome for non-expert users
 - None of them convince the user that they are really communicating with *the target* device

- Camera phones have sufficient resources to scan 2D barcodes
- Some have high-quality screens which can display freshly-generated barcodes
- Using them together yields a *visual*, locationlimited channel
- Visual channel can provide demonstrative identification of communicating parties to the user

Enables strong human-assisted authentication

Basic SiB Protocol

Basic SiB Protocol

- Not all devices have big enough displays to show twodimensional bar codes
- Not all devices have good-enough cameras
- Sometimes devices cannot be placed sufficiently near
- There might not be enough light for pictures

SiB Summary

- 2D barcodes to authenticate devices with camera phones
 - Involve the user, but a way that is intuitive
 - Taking pictures of desired communication endpoints is one way to achieve this property
- Disadvantages
 - Many devices lack a camera or barcode scanner
 - Need graphical display or sticker
 - Visually-impaired users
 - Poor visibility scenarios (e.g., smoke, darkness)
 - Requires sufficiently clear picture

More visual out-of-band channels

- "Snowflake", "Random Arts Visual Hash" and "Colorful Flag"
 - OOB data encoded in images, users are asked to compare them on two devices. Require both devices to have displays with sufficiently high resolution
- Secure Device Pairing Based on Visual Channel by Saxena et al.
 - Proposed as an improvement to SiB through the use of LED and extracting information based on inter-blink gaps
 - One device blinks
 - The other takes a video clip
 - Video clip parsed to extract an authentication string

Lecture outline

Motivation

Device Paring Schemes

- Resurrecting Duckling
- Talking to Strangers
- Visual Out-of-Band Channels
 - Seeing-is-believing
- Audio Out-of-Band Channels
- Proximity-Based Approaches
- Accelerometer-Based Approaches
- Biometrics-Based Approaches

Audio out-of-band channel

- Loud and Clear (L&C) by Goodrich et al.,
 - Use audio as OOB channel for human-assisted authentication
 - Derive auditory-robust, syntactically correct, but nonsensical (MadLib) sentence from hash of a public key
 - E.g., Donald the fortunate blue-jay fraudulently crushed over the creepy arctic-tern.
 - Compare the vocalized sentences
- Human-Assisted Pure Audio Device Pairing (HAPADEP) by Soriente et al.,
 - Pairing two devices that have no common standard wireless channel at the time of pairing
 - Use audio to exchange both cryptographic material and protocol messages

Audio out-of-band channel caveat

- Not applicable to pairing scenarios where one of the devices does not have a display and/or a speaker (or microphone in case of HAPADEP)
- Not suitable for hearing-impaired users
- Not feasible in noisy environments
- Places burden on user to compare the two Madlib sentences or Melodies

Current research...

- Group pairing scenarios for >2 devices.
- Pairing with interface-less devices e.g. RFID, some sensors

OOB is not the only way ...

- Amigo: Proximity-Based Authentication of Mobile Devices [Varshavsky et.al. UbiComp 2007]
 - Secure pairing requires a shared secret
 - Devices in close proximity perceive a similar radio environment
 - Derive shared secret from common radio environment
 - Listen to traffic of ambient radio sources
 - Use knowledge of common radio environment as proof of proximity

Devices in proximity should perceive similar environment

85% common pkts

40% common pkts

Amigo: advantages & disadvantages

Advantages

- No extra hardware
 - Leverage radio already available on device
- No user involvement to verify pairing
- Not subject to eavesdropping
 - Secret derived by listening to ambient sources

Disadvantages

- Robustness is an issue
 - Different antennas, imperfect synchronization and other differences between devices may prevent pairing.
- Only security guarantee is that the devices are close to each other.
- Security is not really provable or quantifiably in a traditional way

Accelerometer-Based Approaches

- Smart-its-Friend by Holmquist et al.
 - Use common readings from the embedded accelerometers in the devices
 - Security has not been the major concern
- Are You With ME by Lester et al.
 - Use accelerometers' data to show that a set of devices is being carried by the same person
- Shake-Well-Before-Use by Mayrhofer et al.
 - Combine cryptographic primitives with accelerometer data analysis for secure device-to-device authentication

Accelerometer-Based Approaches

- Require accelerometer in each device
- Large variety of devices can not be shaken together

Biometrics-Based Approaches

- Biometrics are a common technique for identifying human beings
- Feeling-is-Believing (FiB) by Buhan et al.
 - Keys derived from grip pattern biometrics for smart guns
- Secure Ad-hoc Pairing with Biometrics (SAfE) by Buhan et al.
 - Keys derived from face recognition result

- Logic and calculations to accurately recognize the biometricpatterns are a heavy burden on its applications
- Issue regarding the accuracy of recognition techniques still need more research and improvement
- Require biometrics reader in both of the devices

- Good Neighbor: Ad-Hoc Pairing of Nearby Wireless Devices by Multiple Antennas
 - No OOB channel
 - Require multiple antennas
 - utilizing the characteristics of wireless signal that the power of the received signal is inversely proportional to some exponent of the distance between the sender and receiver

Comparison of OOB Channels

	Device/Equipment Requirements					
Pairing Method	Sending Device	Receiving Device	Phase I: Setup	Phase II: Exchange	Phase III: Outcome	OOB Channels
Resurrecting Duckling*	Hardware port (e.g., USB) on both and extra cable		Connect cable to both devices	NONE	NONE	Cable
Talking to Strangers*	IR port on bot	h	Activate IR on both & find /align IR ports	NONE	NONE	IR
Visual Comparison: Image, Number or Phrase	Display + user	-input on both	NONE	Compare two images, or two numbers, or two phrases	Abort or accept on both devices	Visual
Seeing is Believing (SiB)*	Display + user-input	Photo camera + user-output	Activate photo mode on receiving device	Align camera on receiving device with displayed barcode on sending device, take picture	Abort or accept on sending device based receiving device decision	Visual
Blinking Lights*	LED + user-input	User-output + Light detector or video camera	Activate light detector or set video mode on receiving device	Initiate transmittal of OOB data by sending device	Abort or accept on sending device based receiving device decision	Visual
Loud & Clear •Display-Speaker •Speaker-Speaker	User-input on •display on on other, or •speaker on b	both + e & speaker on oth	NONE	Compare: two vocalizations, or display with vocalization	Abort or accept on both devices	•Audio, or •audio + visual

Button-Enabled (BEDA) •Vibrate-Button* •LED-Button* •Beep-Button*	User input + •vibration , or •LED, or •beeper	User output + One button +	Touch or hold both devices	For each signal (display, sound or vibration) by sending device, press a button on receiving device	Abort or accept on sending device based receiving device decision	 Tactile, or Visual + tactile, or Audio + tactile
Button-Enabled (BEDA) •Button-Button*	One button on l output on one	both + user-	Touch or hold both devices	Simultaneously press buttons on both devices; wait a short time, repeat, until output signal	NONE (unless synch. error)	Tactile
Copy-and-Confirm*	Display + user-input	Keypad + user-output	NONE	Enter value displayed by sending device into receiving device	Abort or accept on sending device based on receiving device decision	Visual
Choose-and-Enter*	User input on b	oth devices	NONE	Select "random" value and enter it into each device	NONE (unless synch. Error)	Tactile
Audio Pairing* (HAPADEP variant)	Speaker + user-input	Microphone + user-output	NONE	Wait for signal from receiving device.	Abort or accept on sending device	Audio
Audio/Visual Synch. •Beep-Beep •Blink-Blink •Blink-Beep	User-input on b •Beeper on each •LED on each, o •Beeper on one	oth + h , or, or & LED on other	NONE	Monitor synchronized: •beeping, or •blinking, or •Beeping & blinking	Abort on both devices if no synchrony	•Visual, or • Audio, or •Audio + visual
Smart-its-Friends*, Shake-Well-Before-Use*	2-axis acceleron user-output on	neters on both + one	Hold both devices	Shake/twirl devices together, until output signal	NONE (unless synch. error)	Tactile + motion

Pervasive Computing Security: Secure Paring

Conclusions

- Secure Device Pairing problem has 3 dimensions: security, usability and practicality
- If the user is involved, it should be intuitive, resistant to user errors and not burdensome
 - □ Taking pictures/videos is one way
 - $\hfill\square$ Listening is another
 - □ Reading is yet another
 - □ And there other others like shaking too...
- Exotic hardware assumptions (laser transceiver, etc.) or protocols like Amigo and Distance-Bounding doesn't help to solve the problem in real-life, at least not today.

Conclusions (cont.)

- Pairing protocols vary in the:
 - Strength of their security
 - The level of required user intervention
 - Their susceptibility to environmental conditions
 - Required physical capabilities of the devices
 - Required proximity between the devices
- Majority of the users are non-technical
- Difficult to remember the different kinds of steps for establishing secure channel in varying situations and scenarios

Conclusions (cont.)

- We need to:
 - Investigate ways of integrating different pairing protocols within a general architecture for providing secure and usable pairing mechanisms for a large set of ad hoc scenarios
 - Integrate discovery mechanism into pairing schemes
- Emerging scenarios are even more challenging
 - Group pairing
 - Home sensor networks
 - Pairing with personal RFID tags