Wireless Network Security and Privacy

Smartphone Security and Privacy

Android security model; Privilege delegation attack and solution;

CIS 546 Di Ma

The issue

"Security and Privacy in the smartphone age"

Is important because smartphones are

- undoubtedly becoming ubiquitous
 - 4 time faster than mobile phone market (IDC report)
- more than just a phone or a desktop computer
- increasingly with new functionalities
 - i.e., NFC-enabled smartphone as payment tokens (Google Wallet)

How NFC phones can steal your credit card info

http://www.youtube.com/watch?v=EKks3vfiy6Q

The issue

"Security and Privacy in the smartphone age"

Will become even more important

- When we shift to a mobile, cloud-based computing world
 - Increased risk of private data falling prey to snooping by
 - the government, private hackers, or the cloud service provider itself
 - Still cloudy on whether server-side data is protected by law, e.g., the Fourth Amendment
- When users are continuously supplied with unlimited amounts of free apps
 - Apps gather sensitive phone/user information
 - Apps may contain malware
 - Reputable apps can be repackaged and injected with malicious links

- Various forms of security threats exist on smartphone platforms
 - Apple's iOS
 - Apple utilizes a vetting process (application review) which is secret
 - Less malware found so far, but a lot of permission misuses and privacy invasion
 - Android
 - A much complete permission system
 - An opener platform, thus much harder to control

Android Architecture

Android Applications

- Usually, Android applications consist of separated modules, or components. Components communicate through the mechanism of Inter Component Communication (ICC).
- Android applications may utilize libraries written in native code via JNI
 - May bypass the security provided by the Java programming language

Android Security Mechanisms

- Discretionary Access Control
 - Inherited from Linux
 - Each file is assigned access rules for three sets of subjects
 - User, group, or everyone
 - Each subject set may have permissions to read, write, and execute a file

Sandboxing

- Sandboxing isolates applications form each other and from system resources.
- In Android's sandboxing, each application is assigned a unique ID.
- An application can only have access to files owned by itself, or files of others which are explicitly announced to be public for others

- Permission mechanism
 - Security sensitive interfaces are protected by standard Android permissions. (e.g. PHONE_CALLS, INTERNET, SEND_SMS)
 - Required permissions of an app are written in a Manifest file. The permissions should be confirmed by user upon installation.
 - At runtime, when an ICC call is requested by a component, a reference monitor checks whether the application has proper permissions
 - Application developers may also add reference monitors into their own applications to verify permissions granted to the ICC call initiator

- Accessibility of components
 - Components can be public or private
 - Private components
 - Accessible only by components within the same applications
 - Public components
 - Reachable by other applications
 - Full access can be limited by requiring calling applications to have specified permissions

- Application signing
 - Use cryptographic signature to verify the origin of applications
 - Developers have to sign their apps
 - This enables signature-based permissions
 - Applications from the same origin (i.e., signed by the same developer) share the same UserID
 - A certificate of the signing key can be self-signed and does not need to be issued by a CA

Issues with the current practice

- Major manufactures employ application permissions to prevent sensitive data from unauthorized access
 - Sensitive: GPS, camera, microphone, SMS,
- However,
 - It relies upon user diligence and awareness
 - Permissions are granted all-at-once and only at installation time
 - Subsequent permission check is transparent to users
 - Permission check can be circumvented through permission attacks

Permission Escalation Attack and One Solution

- IPC Inspector
- https://plus.google.com/photos/11058195572009874
 1626/albums/5638277509860549393/564302888345
 0066674

Other solutions to permission delegation attacks

- DroidChecker (WiSec'12)
 - Parse the AndroidManifest.xml to find out if
 - The application uses at least one permission, AND,
 - There exists an activity or service component that does not require any permission and is publicly visible
 - Components satisfying both conditions have the potential of capability leak (as being victim of permission delegation attack)
- TaintDroid (OSDI'10)
 - Dynamically taint-tracking of the flow of privacy sensitive data
 - Monitors in real-time how applications access and manipulate users' personal data

Issues with the current practice

Even sensitive data can be protected, is it enough? how about non-sensitive data?

. . .

- Non-sensitive: accelerometer, proximity sensor, light sensor,

New privacy attacks

non-sensitive data can reveal sensitive information !!!

The challenges

- Understand the implications of various data and their fusion on privacy
 - Non-sensitive data can reveal sensitive information
 - Non-sensitive data, collected over a sufficiently long time, can reveal sensitive information
 - Multiple non-sensitive data can reveal sensitive information

Communicate the result to users in a comprehensible way

- To assist them to have **controlled release** of personal information
 - Privacy is culture-dependent, individual-dependent, time-dependent, situation-dependent ...

Develop automatic and adaptive defenses

- to satisfy the requirement for controlled release of personal information

Improve Users' Comprehension of Android Permissions

Presentation

- Enhancing Users' Comprehension of Android Permissions
- By Padmini

Other ideas (please comment!)

- Use a numerical value to represent the risk level associated with an app
 - Called as risk index
 - Index can be at different granularity level
 - Summary index, medium index, detail index
 - Where to collect risk information?
 - User review, static analysis, dynamic analysis
 - How to model risk index?
- Use nutrition label to represent risks associated with each resource