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Abstract—Many RFID tags store valuable information privy
to their users that can easily be subject to unauthorized
reading, leading to owner tracking or impersonation. RFID
tags are also susceptible to different forms of relay attacks. This
paper presents novel sensing-enabled defenses to unauthorized
reading and relay attacks against RFID systems without
necessitating any changes to the traditional RFID usage model.

More specifically, the paper proposes the use of on-board tag
sensors to (automatically) acquire useful contextual informa-
tion about the tag’s environment (or its owner, or the tag itself).
First, such context recognition is leveraged for the purpose of
selective tag unlocking – the tag will respond selectively to
reader interrogations, i.e., only when it is deemed safe to do
so. In particular, a novel selective unlocking mechanism based
on owner’s posture recognition is presented. Second, context
recognition is used as a basis for transaction verification in
order to provide protection against a severe form of relay
attacks involving malicious RFID readers. A new transaction
verification mechanism is developed that can determine the
proximity (or a lack thereof) between a valid tag and a valid
reader by correlating certain (specifically audio) sensor data
extracted from the two devices. Our evaluation of the pro-
posed mechanisms demonstrate their feasibility in significantly
raising the bar against RFID attacks.

I. INTRODUCTION

Low cost, small size, and the ability of allowing com-
puterized identification of objects make Radio Frequency
IDentification (RFID) systems increasingly ubiquitous in
both public and private domains. A typical RFID system
consists of tags, readers and/or back-end servers. Tags are
miniaturized wireless radio devices that store information
about their corresponding subject. Such information is usu-
ally sensitive and personally identifiable. For example, a US
e-passport stores the name, nationality, date of birth, digital
photograph, and (optionally) fingerprint of its owner [12].
Readers broadcast queries to tags in their radio transmission
ranges for information contained in tags and tags reply with
such information. The queried information is then sent to
the server for further processing.

Due to the inherent weaknesses of underlying wireless
radio communication, RFID systems are plagued with a wide
variety of security and privacy threats [11]. A large number
of these threats are due to the tag’s promiscuous response to
any reader requests. This renders sensitive tag information

easily subject to unauthorized reading [9]. Information (such
as an identifier) gleaned from a RFID tag can be used to
track the owner of the tag, or to clone the tag so that an
adversary can impersonate the tag’s owner [11].

Promiscuous responses also incite different types of relay
attacks. These include the “ghost-and-leech” attack [14],
whereby an attacker (ghost) relays the information surrep-
titiously read from a legitimate RFID tag to a colluding
entity (leech) which relays it to a legitimate reader. This
way a ghost and leech pair can succeed in impersonating a
legitimate RFID tag without actually possessing the device.
A more severe form of relay attacks, usually against payment
cards, is called a “reader-and-leech” attack. In this attack,
a malicious reader colludes with the leach [5]1, and can
make purchases using a victim’s RFID tag. We note that
addressing the reader-and-leech attack requires transaction
verification, i.e., validation that the tag is indeed authorizing
the intended payment amount. The feasibility of executing
relay attacks has been demonstrated on many RFID (or
related) deployments [5], [7].

With the increasingly ubiquitous deployment of RFID
applications, there is a pressing need for the development
of security primitives and protocols to defeat unauthorized
reading and relay attacks. However, providing security and
privacy services for RFID tags presents a unique and
formidable set of challenges. The inherent difficulty stems
partially from the constraints of RFID tags in terms of
computation, memory and power, and partially from the un-
usual usability requirements imposed by RFID applications
(originally geared for automation). Consequently, solutions
designed for RFID systems need to satisfy the requirements
of the underlying RFID applications in terms of not only
efficiency and security, but also usability.

A. Sensing-Enabled Automated Defenses
This paper proposes the use of sensing technologies

towards addressing unauthorized reading and relay attacks
without necessitating any changes to the traditional RFID
usage model, i.e., without incorporating any explicit user
involvement beyond what is practiced today.

1In contrast to the ghost-and-leech attack, the owner in the reader-and-
leech attack is aware of the interrogation from the (malicious) reader.



The premise of our work is a current technological
advancement that enables many RFID tags with low-cost
sensing capabilities. Various types of sensors have been
incorporated with many RFID tags [20], [10], [22]. Intel’s
Wireless Identification and Sensing Platform (WISP) [21],
[24] is a representative example of a sensor-enabled tag
which extends RFID beyond simple identification to in-
depth sensing. This new generation of RFID devices can
facilitate numerous promising applications for ubiquitous
sensing and computation. They also suggest new ways of
providing security and privacy services by leveraging the
unique properties of the physical environment or physical
status of the tag (or its owner).

B. Our Contributions
In this paper, we show that contextual information can be

leveraged in two broad ways towards providing enhanced
protection against RFID unauthorized reading and relay
attacks, and put forth the following contributions.

• Selective Unlocking Using Posture Recognition: We
show that contextual information can be used to design
selective unlocking mechanisms so that tags can selectively
respond to reader interrogations. That is, rather than re-
sponding promiscuously to queries from any readers, a tag
can utilize “context recognition” and will only communicate
when it makes sense to do so, thus raising the bar even for
sophisticated adversaries.

We propose a concrete mechanism for such a context
aware selective unlocking geared for many different RFID
applications. Our approach is based on owner’s posture
recognition, and is well-suited for many applications where
a specific posture of the owner of the RFID tag may
serve as a valid context. These include implanted medical
devices and smart car keys used as part of the Passive
Keyless Entry and Start (PKES) systems [7]. We present
the design, implementation, and evaluation of such a posture
recognition/translation mechanism based on a combination
of accelerometer and magnetometer readings. Our results
indicate the mechanism to be fairly accurate even under
severe resource constraints.

• Transaction Verification Using Sensor Data Corre-
lation: We show that contextual information can be used
as a basis for transaction verification in order to defend
against the reader-and-leech attacks, a specialized form
of relay attacks involving malicious readers. Specifically,
we develop a new transaction verification mechanism that
can determine the proximity (or lack thereof) between a
valid tag and a valid reader by correlating certain sensor
data extracted from the two devices. This is based on the
assumption that certain ambient information, extracted by
the tag and reader at the same time (transaction time), will
be highly correlated if the two devices are in close physical
proximity. In particular, we demonstrate that audio sensors
(microphones) can be effectively used for such transaction

verification. We present several techniques that can be used
for determining similarity between two short audio signals
extracted by the valid tag and valid reader, and show that
these techniques are quite useful in significantly raising the
bar against the reader-and-leech attacks.

C. Cost for Sensing-Enabled Tags
The cost of an RFID tag is dependent on several factors

such as the capabilities of the tag (computation, memory),
the packaging of the tag (e.g., encased in plastic or em-
bedded in a label), and the volume of tags produced. The
current cost of WISP tags – equipped with a thermometer
and an accelerometer – assembled from discrete components
is roughly $25 but it is expected that this number will be
reduced closer to $1 once the WISPs are mass manufactured
[3].

Integrating a magnetometer and a microphone with an
RFID tag (as required by our approaches) is also quite
feasible economically. We note that usually cost of sensing
hardware varies greatly not only between different types of
sensors but also between various models of the same kind.
Magnetometers, for example, can be as costly as several
hundred dollars or as inexpensive as a few cents when pur-
chased in bulk Microphones are typically quite inexpensive
[6]. These cost estimates are certainly acceptable for high-
end tags and do not affect their business model.

II. PRIOR WORK

Hardware-based Selective Unlocking: Hardware-based se-
lective unlocking usually requires the users to carry an aux-
iliary device (such as a blocker tag in [13] or a mobile phone
in [17]). Such an auxiliary device may not be available at the
time of accessing RFID tags, and users may not be willing
to always carry these devices. A Faraday cage can also be
used to prevent an RFID tag from responding promiscuously
by shielding its transmission. The requirement for a special-
purpose cage (a foil envelope or a wallet) may decrease the
usability of such solutions. Moreover, a crumpled sleeve is
shown to be ineffective for shielding purposes [15].
Distance Bounding Protocols: These protocols have been
suggested to thwart relay attacks [5], [7]. A distance bound-
ing protocol is a cryptographic challenge-response authen-
tication protocol which allows the verifier to measure an
upper-bound of its distance from the prover . (We stress that
traditional “non-distance-bounding” cryptographic authen-
tication protocols are completely ineffective in defending
against relay attacks.) Using this protocol, a valid RFID
reader can verify whether the valid tag is within a close
proximity thereby detecting ghost-and-leech and reader-and-
leech relay attacks [5], [7]. The upper-bound calculated
by an RF distance bounding protocol, however, is very
sensitive to response time delay, as even a light delay (a few
nanoseconds) may result in a significant error in distance
bounding. A recent distance bounding scheme achieves a



processing time of less than 1 ns at the prover side [18].
However, the protocol requires specialized hardware at the
prover side for channel selection. This renders existing
protocols currently infeasible for even high-end RFID tags.
Context-Aware Selective Unlocking: “Secret Handshakes”
is a recently proposed interesting selective unlocking method
that is based on context awareness [4]. In order to unlock an
accelerometer-equipped RFID tag [21] using Secret Hand-
shakes, a user must move or shake the tag (or its container)
in a particular pattern. A number of unlocking patterns
were studied and shown to exhibit low error rates [4]. A
central drawback to Secret Handshakes, however, is that a
specialized movement pattern is required for the tag to be
unlocked. This clearly requires subtle changes to the existing
RFID usage model.

Motion Detection” [23] is another selective unlocking
scheme. Here a tag would respond only when it is in
motion instead of doing so promiscuously. Although Motion
Detection raises the bar required for a few common attacks
to succeed, it is not capable of discerning whether the device
is in motion due to a particular gesture or because its owner
is in motion, which results in a high false positive rate.

III. SELECTIVE UNLOCKING USING POSTURE
RECOGNITION

In certain RFID applications, a specific posture of the
tag owner may serve as a valid context. One class of
such applications involve implanted medical devices (IMDs).
Under legitimate IMD access, we can assume that the patient
is lying down on his or her back. Thus, access to the IMD
will be granted only when the patient’s body is such a pre-
defined unique posture. Yet another class of applications
that can benefit from posture based contexts involve the
Passive Keyless Entry and Start (PKES) system [7]. In such
applications, a driver needs to move into the car and sit
down on the driver’s seat before the engine can be started
automatically (while the key resides in the driver’s pockets).
Thus, getting into the car and sitting on the driver seat
can be considered necessary posture sequences that need
to be performed to unlock the car key. Such unlocking
mechanisms prevent an attacker from launching attacks in
many common scenarios, for example, controlling the IMD
while standing just behind the patient in public, or, starting
the car engine when the driver is sitting in a restaurant.

Since posture formations are human activities performed
by users unconsciously, posture recognition can provide a
finer-grained non-obtrusive unlocking mechanism without
purposeful or conscious user involvement. In the subsequent
sections, we first point out the differences between two
primary activity types: posture and posture transition. We
then concentrate on posture transition recognition.
A. Posture Classifications

In order to optimize our algorithms (due to RFID resource
constraints), we classify postures into two primary types:

posture and posture transition. Posture means a static posture
status that a user can maintain for a certain duration, such as
lying, sitting, standing and walking. Posture transition sub-
sumes different human movements, such as “stand-to-sit”,
“sit-to-stand”, “sit-to-lie”, “lie-to-sit”, and so on. Posture
transitions capture the dynamics of human movement and
usually only last for a short duration.

We analyze the features of these two posture types and
realize that most of the postures and some of the posture
transitions can be simply detected by measuring direction
changes or status changes in sagittal and transverse planes.
In case of posture recognition, consider, for example, an
IMD – such as a pacemaker implanted into the patient’s
chest area – equipped with a 3-axes accelerometer. As
the IMD is fixed to the human body, it remains static
relative to the body system but has different orientations
in the earth coordinate system (magnetic north and gravity)
due to human body movement. Thus, we can detect such
movements by simply monitoring its relative orientation
change in the earth coordinate system.

In contrast, posture transition recognition is similar to
gesture recognition to a certain extent. Similar to the gesture
recognition schemes, such as Secret Handshake [4], in
posture transition recognition, user movement is recorded
by motion sensors such as accelerometers. The captured
motion data is then compared with a reference posture
template which has been recorded by performing the cor-
responding movement in a reference coordinate system. A
match between the captured data and the reference template
implies that the user has exhibited a certain posture transition
defined by the reference template. However, there is one
primary difference between gesture recognition and posture
transition recognition, i.e., device tilt. In (hand) gesture
recognition systems, users are assumed to be aware of their
hand activities. So gestures are performed in a more-or-
less controlled way without tilting the tag so that the effect
of tilt can be greatly minimized or ignored. However, in
posture transition recognition, we do not require any explicit
user involvement. Thus the tag can be tilted due to the
movement of the human body. The reference template is
usually collected in a reference coordinate system. However,
once a device is tilted, movement data collected from the
device is no longer in the reference coordinate system and
the corresponding posture will not be detected correctly. It
is therefore critical to detect the tag’s orientation in order
to rotate the data vector back to the reference coordinate
system for correct recognition.

In the following subsections, we will focus on posture
transition recognition in the presence of device tilt. From
here on, we use posture and posture transition interchange-
ably.
B. Design Considerations

Choice of Sensors: Current systems for full orientation
estimation, such as the one in Apple iPad2, typically use a



set of sensor modalities – including gyroscopes, accelerome-
ters and magnetometers – to estimate device orientation. Gy-
roscopes are used to accurately determine angular changes
while the other sensors are used to compensate for the
gyroscopes’ integration drift. However, a typical gyroscope
is larger and requires about 5 to 10 times more power
than magnetometer and accelerometer together. Therefore,
gyroscopes are not commonly available in a tiny single
package MEMS-chip. Considering the resource constrains
imposed by RFID platforms, we avoid using gyroscopes
and instead focus on accelerometers and magnetometers for
device orientation and posture estimation. As integrated ac-
celerometers and magnetometers are commercially available
in tiny packages, an RFID tag with such sensors can be
flat and less obtrusive for the user, which makes them very
attractive to be used in IMDs or smart car keys.

Device Orientation: A number of schemes have been
proposed to estimate device orientation via the calculation
of Euler angles using readings from both accelerometers and
magnetometers. After investigating multiple schemes in the
literature on human movement detection, we chose to adopt
the scheme proposed in [2] for posture recognition. Unlike
other schemes, which can be applied to detect generic types
of movements (not only human movements), the scheme
proposed in [2] is specifically designed to track certain
human movements, e.g., rising from a chair or walking. So, it
is well suited to planar movements which are classically per-
formed by humans and relevant for our RFID applications.
Many classical human movements are usually constrained to
one or two degrees of freedom (DOFs). For example, during
walking, we are interested in rotations in the sagittal plane
and azimuth direction of the walking motion. This means
that we can give up one DOF and still correctly catch the
features of a specific posture. By giving up one DOF, the
amount of computation needed for orientation estimation can
be greatly reduced.
C. System Design

Our posture recognition system makes use of the strategies
explored in the two gesture recognition systems [4], [16]
and extends them to deal with device tilt due to certain
human movements. Because our system is free of orientation
limitations, there is no need for the user to hold the device
in a certain fixed way during the movement. We achieve
our goal by utilizing a 3-axis magnetometer and a 3-axis
accelerometer combination. The magnetometer data is used
to estimate device orientation in motion to mitigate the
effect of motion disturbance since magnetometer reading is
insensitive to acceleration. With the orientation information,
the accelerometer data is “shifted” back to the reference
coordinate system, and is then compared with the template(s)
stored on the tag to recognize a certain posture.

Orientation Estimation: In this paper, all coordinate
systems used are right-handed Cartesian coordinate systems.
The earth-fixed reference coordinate system I is defined as

follows (see Figure 1). The z axis points to the sky and
is perpendicular to the ground. The x axis is parallel to
the ground and points to the magnetic north. The y axis
follows the right-hand rule, is also parallel to the ground and
orthogonal to z and x. Each sensor, 3-axis magnetometer and
3-axis accelerometer, has its own body coordinate system B.

(a) Horizontal plane (b) North meridian plane

Figure 1. The Earth Reference Coordinate System

Let ~vacc = (ax, ay, az) denote the values of the 3
axes from the accelerometer and ~vmag = (mx,my,mz)
denote the values of the 3 axes from the magnetometer.
Let ~I = (x, y, z) be the unit vector in the earth reference
coordinate system. In the general case, there exists a unique
rotation matrix R that gives the relative orientation between
the sensor coordinate system B and the reference system I .
The rotation matrix R can be decomposed as a sequence of
three elementary rotations, i.e., rotation around the Z axis
or yaw angle (ψ), followed by a rotation around the Y axis
or pitch angle (θ), and finally a rotation around the X axis
or roll angle (ϕ). This transformation is shown as:

R(ψ, θ, ϕ) = R(ψ)R(θ)R(ϕ)

By adapting the approach proposed in [2], without losing
the capability to catch the features of movements, we assume
a null roll angle (ϕ = 0) and a null acceleration along the
ay axis. Now we can simply represent the rotation matrix
as R(ψ, θ) = R(ψ)R(θ). By minimizing a cost function:

J = || ~vmag

|~vmag|
−R~I||2 (1)

we can recover the two Euler angles ψ and θ. From
these angles, we can compute the acceleration in horizontal
and vertical direction in the reference coordinate system as
follows (g = 9.81m/s2):

ah = −ax cos θ cosψ − az sin θ (2)
av = ax sin θ − az cos θ + g (3)

System Components: Based on the orientation calcula-
tion algorithm presented above, posture recognition can be
accomplished in the following steps:
1. Template Creation: Posture templates in the reference
coordinate system are created and stored on the tag before
posture recognition is performed. Each template defines a
specific type of posture. We will also convert the template
data into vertical and horizontal direction acceleration. A
vector in the template is denoted as ~Ti = (Thi, Tvi).
2. Data Collection: While a user performs the movement



corresponding to a particular posture, accelerometer and
magnetometer data are collected for a certain short period
depending on the number of data points needed to accurately
identify a movement. During data collection, the device/tag
is either fixed on the shoulder/chest or casually placed inside
the pocket.
3. Orientation Estimation: Once a series of temporal
magnetometer data is captured, it is used to estimate the
orientation of the tag and to transform the acceleration vector
back to reference coordinate system as adjusted acceleration
data. That is, the data is used to calculate the two Euler
angles ψ and θ by minimizing the cost function J (as defined
in formula 1).
4. Posture Recognition: Similar to the Secret Handshake
scheme, we use cross-correlation to measure the similarity
between two time series. The cross-correlation C of the
adjusted acceleration data (ah, av) against a template T is
calculated as follows:

C =

n∑
i=1

(ahiThi + aviTvi) (4)

A match will be confirmed when C exceeds a certain
cross-correlation threshold. The estimation of C will be
described in Section V.

IV. TRANSACTION VERIFICATION USING SENSOR DATA
CORRELATION

A highly difficult problem arises in situations when the
reader, with which the tag (or its user) engages in a trans-
action, itself is malicious. For example, in the context of an
RFID credit card, a malicious reader can fool the user into
approving a transaction whose cost is much more than what
she intended to pay. A malicious reader can also collude with
a leech for the attack. Addressing such a relay attack requires
validation that the tag is indeed authorizing the intended
payment amount (selective unlocking is ineffective for this
purpose as the tag is already unlocked).

In this paper, we set out to explore the design of
sensor-enabled automated mechanisms for protecting against
reader-and-leech attacks. We note that under such attacks,
the valid tag and the valid reader would usually not be
in close proximity (e.g., the tag is at a restaurant, while
the reader is at a jewelery shop [5]). This is in contrast to
normal circumstances whereby the two entities would be at
the same location, physically near to each other. Thus, a
difference between the locations of the tag and the reader
would imply the presence of such attacks. In other words,
both the valid tag (credit card) and valid reader may transmit
their locations, or some location-specific information, to a
centralized authority (issuer bank). This authority can then
compare the information received from both entities and
reject the transaction if the two mismatch. We note that such
a solution can be deployed, with minor changes on the side
of the issuer bank, under the current payment infrastructure,

where cards share individual keys with their issuer banks
(as discussed in Section 2.1 of [5]), and all communication
takes place over secure channels.

The main question this raises is: what location-specific
information could be used in the context of the RFID
system? In this paper, our overarching idea is to derive
such location-specific information by means of traditional
ambient sensors that can be easily integrated with RFID
tags. This is based on the assumption that certain ambient
information, extracted by the tag and reader at the same
time (the time of transaction), will be highly correlated if
the two devices are in close physical proximity. Therefore,
if two sensors, one attached to the tag and the other to the
reader, report mismatching ambient information, this will
indicate that the tag and reader are (most likely) not at the
same location or close to each other.

A. Correlation Using Audio

We explore the use of audio sensors (microphones) for
accomplishing the aforementioned approach to transaction
verification. This choice is motivated by the intuition that the
audio data captured at two different locations at a given time
may be different to some extent. Specifically, we suggest
that both the tag and the reader each be equipped with a
microphone. Whenever a transaction is initiated, a short-
term data acquired by these microphones on the two devices
will be transmitted to the bank server. The server will then
perform correlation analysis over the two audio signals and
determine the outcome of the transaction based on the degree
of correlation between the signals. As an example, under a
normal scenario, when both the valid tag and valid reader
are at the restaurant, the data captured by their respective
microphones is likely to be highly correlated, in which case
the transaction will be accepted. In contrast, under an attack,
when the valid tag is at the restaurant but the valid reader
is at a jewelery store, the audio data is not likely to be
correlated, in which case the transaction will be rejected. In
the following section, we present techniques that can be used
for such correlation analysis over audio signals. Our goal is
to design methods that can result in low False Rejection
Rates (probability of rejecting a transaction under normal
scenario) and low False Acceptance Rates (probability of
approving a transaction under an attack).

B. Similarity Detection Techniques

We first need to determine if the audio recordings captured
from the same location have higher similarity than record-
ings taken at different locations. To this end, we investigate a
few methods to detect such similarity including: time-based
methods, frequency-based methods as well as a combined
time-frequency method.
Time-Based Similarity Detection: To detect the similarity
between the time-based signals Xi and Xj , we propose
using two methods: correlation and difference. The signals



will first be normalized according to their energy (so that
each signal has a total energy equal to 1). Then, in the
first method, the correlation between each two signals will
be calculated and the maximum correlation will be used.
Therefore, the correlation based similarity between two
signals Xi and Xj can be measured by:

Sc(i, j) = max(Cross-Corr(Xi, Xj)) (5)

In the second method, the distance between each bit of
the signals is calculated and the overall Euclidean norm of
the distance is used as below:

D(i, j) = ‖Xi −Xj‖ and Sd(i, j) = 1−D(i, j) (6)

Our tests (Section V-B) show that the time-based cor-
relation provides better results compared to the difference
between the signals.
Frequency-Based Similarity Detection: In the frequency-
based detection approach, we use Fast Fourier Transform
(FFT) to create the frequency coefficients for each recorded
signal. We then use both the correlation and the difference
between the FFT coefficients in order to evaluate the similar-
ity between different segments taken at the same place (in
consecutive time periods) vs. recordings taken at different
locations.
Time-Frequency Based Similarity Detection: This novel
method combines both the time and frequency based mea-
surements to create a point in 2-D space. In this technique,
the overall time-frequency similarity measure is calculated
by:

S(i, j) =
√
(Sc,time(i, j))2 + (Sd,frequency(i, j))2 (7)

This implies that the similarity measurement will be
higher for closer signals.

V. EXPERIMENTS AND RESULTS

To evaluate the effectiveness and performance of the
proposed posture based selective unlocking technique, we
built proof-of-concept prototypes on the Intel WISP tags
(version 4.1) and extended the WISP with magnetic sensing
capability.
A. Posture Recognition Experiments

We report on our implementation and evaluation of the
posture recognition based selective unlocking scheme.

We have implemented a prototype of posture recognition
on the WISP to evaluate the effectiveness of the proposed
scheme in terms of successful recognition rate. In our current
realization of the orientation estimation module, however, to
find the (ψ, θ) pair that minimizes the cost function J in
Equation 1, we need to go through, in an exhaustive way, a
list of 360 × 360 possible candidate values. Moreover, the
WISP platform has limited mathematical function support.
We thus had to use software implementation of the sin and
cos functions in order to rotate data vectors back to the Earth

reference coordinate system. Although we tried to mini-
mize computation cost via implementation optimizations,
the aforementioned factors still make posture recognition
with orientation estimation a bit slow on WISP tags. So,
our evaluation with the WISP prototype does not use this
module currently. We expect that implementation of posture
recognition techniques with orientation estimation will be
better-suited for more powerful tags with more resources,
such as the smart keys used in modern cars which provides
the user with various functionalities such as starting the car
automatically while the driver sits down in the car. An NFC
enabled smartphone can also be thought of as a powerful
sensing-enabled RFID device.

While we were looking for a more efficient orientation
estimation design for use with WISP tags, we also im-
plemented a prototype on a desktop PC. Our PC-based
prototype implementation serves the purpose of evaluating
the effectiveness of posture recognition with orientation
estimation on a more powerful RFID platform. Our design
is modular and so the orientation estimation module can be
ported to more powerful tags when they become available
on the market.

We manually created posture templates by affixing a
WISP on the front trouser pocket area of a test subject and
recorded accelerometer data while the subject performed cer-
tain movements. We created templates for 4 postures: “sit-
to-std” (moving from sitting posture to standing posture),
“std-to-sit” , “sit-to-lie” and “std-to-car-sit”. The std-to-car-
sit posture simulates the smart key setting when a driver gets
into the car, i.e., she stands before a car, then moves into
the car, and sits down on the driver’s seat. Normally, posture
movement is slower than gesture movement. Thus, variations
in the acceleration components do not change much during
a posture movement. Therefore fewer data points are needed
for successful posture recognition in comparison to gesture
recognition. In our experiments, we collected 30 data points
for each posture. Our experimental results show that this
number is sufficient for accurate posture recognition.

To determine which cross-correlation detection thresholds
to use, we collected 40 traces of accelerometer data for each
posture. Each trace is then used as a template, which is
compared with all the other traces to calculate a serial of
C values (Equation 4). The smallest C value is chosen as
the threshold value. This threshold value is stored with the
corresponding template and a matched posture needs to yield
a C value larger than this threshold.

We conducted the following experiment with the WISP
prototype – posture recognition without orientation estima-
tion. In this experiment, posture data is collected when the
WISP is fixed in the position similar to the one we used
while collecting the template data. This simulates the case of
an implanted device which would usually remain in the same
fixed position inside the body. For our second experiment,
we tilted the WISP in different ways in the sagittal plane



and then affixed it to the trouser pocket area. This is to
simulate other (external) RFID devices that can be tilted
inside the pocket or purse. We conducted this second type
of experiments with orientation estimation using our PC
prototype.

We requested a single participant to generate templates
and test samples for our experiments. For each posture, we
conducted 60 tests (each test yielded 30 data points) and
calculated the success rate based on these 60 test results.

The results of our first experiment show that it takes
only around 220 ms to recognize a posture on the WISP.
Our overall results for the two posture recognition ex-
periments are summarized in the two confusion matrices
depicted in Table I. Table I(Left) represents the results
for the WISP implementation without orientation estimation
functionality executed on samples where the device was not
tilted (simulating medical implants, for example); Table I
(Right) represents the results for the PC implementation with
orientation estimation module executed on samples where
the device was tilted.

First comparing the successful posture recognition rates
in Table I(Left) with that of gesture recognition schemes,
such as Secret Handshakes [4] and uWave [16], we find
that we achieve slightly lower recognition rates, although
still high enough for practical purposes. This might be
because of the tilt effect of human movement, as postures
can not be performed in as controlled of a way as gestures.
(Note that we could not completely prevent the effect of
tilt while collecting our samples, unlike the case of a real
fixed medical implant). The posture recognition rates in
Table I(Right), on the contrary, are comparable to that of
gesture recognition schemes. This confirms the effectiveness
of the orientation estimation module for posture recognition
in scenarios where device tilt occurs.

B. Sensor Data Correlation Experiments

In this section, we present our evaluation of the techniques
for transaction verification based on audio data correlation.

1) Data Collection: Since the RFID reader is not mobile,
we used two mobile phones for audio data collections from
different locations. We developed a program that captures
audio from the phone’s built-in microphone. The program
was designed to record up to 30 seconds of continuous
audio data. The phones were synchronized by means of a
wireless signal and recorded the samples at the same time.
We recorded a few audio samples with both microphones at
different locations.

To simulate a normal usage scenario (i.e., when no attacks
occur), the phones were separated by a distance of 3-12
inches. In this case, we tried to detect the probability that
two recordings taken at the same general location (but
a few inches apart and with a different sensor) can be
distinguished from recordings taken at different locations.

For this purpose, we recorded 20 1-sec segments from two
phones simultaneously at 5 different locations,.

To simulate attack scenarios, we recorded audio at 7
different locations, including a few retail stores and fast food
restaurants.

2) Performance of Similarity Detection Techniques: We
test the performance of various techniques, outlined in
Section IV. Specifically, in every test group, we use 5
pairs of 1-sec recording segments. The two samples in
each pair were taken by two different sensors at the same
location simultaneously (each pair was recorded at a separate
location). For each sample, we calculated the probability
that the recording, identified as the most similar to it was
indeed the recording taken at the same location with the
other phone.

We ran the test for 20 separate groups of recordings. The
summary of results obtained by using different techniques
can be found in Table II. Our tests demonstrated that
the result corresponding to time-frequency classification is
superior to all other methods, with a successful detection
rate of 53%.

Table II
PERFORMANCE OF SIMILARITY DETECTION TECHNIQUES

Method Detection Rate

Time-Based Cross-Correlation 38.29%
Time-Based Distance 13.57%

Freq-Based Cross-Correlation 38.57%
Frequency-Based Distance 50.00%

Time-Frequency 52.85%

3) False Accept Rate (FAR) vs. False Reject Rate (FRR):
We next tried to determine the probabilities of incorrectly
approving the transaction with an unauthorized tag and
rejecting the transaction with an authorized tag. FAR is the
sum of false positives, which occur when the audio signal
captured by a valid reader matches the audio signal captured
by a tag, even when the two devices are at different locations.
FRR, on the other hand, is the sum of false negatives, and
denotes the probability that the transaction is rejected even
when the valid tag and valid reader are in close physical
proximity.

We compare the similarity measurement for each recorded
signal with the one taken by the second microphone at the
same location as well as with all the recordings taken at
different locations. We use the similarity matrix as our fea-
ture and train the classifier to learn the similarity threshold
for each couple of samples. We use the SimpleLogistics
classifier from the WEKA package to classify the samples.
We run a 10-fold classification, which partitions the data into
10 partitions, trains the classifier over 9 of the partitions
(which act as the training set) and classify the remaining
samples (the testing set). This is repeated for each partition
and training set in the dataset.

Using this classifier, we found that our FAR is equal to
0% while the FRR is equal to 6.87%. This indicates the
highest level of security while only lowering the usability by



sit-std std-sit sit-lie std-car-sit
sit-std 91.67% 3.33% 3.33% 1.67%
std-sit 1.66% 88.34% 6.67% 3.33%
sit-lie 3.33% 1.66% 93.34% 1.67%

std-car-sit 3.33% 3.33% 1.67% 91.67%

sit-std std-sit sit-lie std-car-sit
sit-std 96.66% 1.67% 1.67% 0.00%
std-sit 1.67% 93.33% 3.33% 1.67%
sit-lie 1.67% 3.33% 95.00% 0.00%

std-car-sit 0.00% 1.67% 5.00% 93.33%

Table I
CONFUSION MATRICES FOR POSTURE RECOGNITION: (LEFT) WITHOUT ORIENTATION ESTIMATION AND DEVICE TILT (WISP IMPLEMENTATION);

(RIGHT) WITH ORIENTATION ESTIMATION AND DEVICE TILT (PC IMPLEMENTATION)

a small amount (a small percent of the valid users will need
to run the authentication a second time). We also calculated
the Accuracy and the Precision. For our Data, we received
Accuracy of 99.23% and Precision of 100%.

VI. CONCLUSIONS

We presented novel sensing-enabled defenses to unau-
thorized reading and relay attacks against RFID systems
without necessitating any changes to the traditional RFID
usage model. First, selective unlocking mechanisms based
on owner’s posture recognition was presented. Second, a
transaction verification mechanism was developed that can
determine the proximity between a valid tag and a valid
reader by correlating audio sensor data extracted from the
two devices.

Our evaluation of all the proposed mechanisms demon-
strate their feasibility in effectively and significantly rais-
ing the bar against many lingering RFID attacks without
negatively affecting the currently employed usage model of
the underlying RFID applications. As an immediate avenue
for future work, we intend to further optimize and fine-tune
our algorithms for better efficiency on resource-constrained
RFID platforms and improved tolerance to errors whenever
applicable. We also plan on working with other sensors
(besides magnetometer, accelerometer and microphones),
and combinations thereof, so as to further improve the
security of our approaches.
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