
Tap-Wave-Rub: Lightweight Malware Prevention for
Smartphones using Intuitive Human Gestures

Haoyu Li1, Di Ma1, Nitesh Saxena2, Babins Shrestha2, and Yan Zhu1

1University of Michigan-Dearborn
{haoyul,dmadma,yanzhu}@umd.umich.edu

2University of Alabama at Birmingham
{saxena,babins}@cis.uab.edu

ABSTRACT
We introduce a lightweight permission enforcement approach –
Tap-Wave-Rub (TWR) – for smartphone malware prevention. TWR
is based on simple human gestures (implicit or explicit) that are
very quick and intuitive but less likely to be exhibited in users’
daily activities. Presence or absence of such gestures, prior to
accessing an application, can effectively inform the OS whether
the access request is benign or malicious. In this paper, we focus
on the design of an accelerometer-based phone tapping detection
mechanism. This implicit tapping detection mechanism is geared
to prevent malicious access to NFC services, where a user is usu-
ally required to tap her phone with another device. We present a
variety of novel experiments to evaluate the proposed mechanism.
Our results suggest that our approach could be very effective for
malware prevention, with quite low false positives and false nega-
tives, while imposing no additional burden on the users. As part of
the TWR framework, we also briefly explore explicit gestures (fin-
ger tapping, rubbing or hand waving based on proximity sensor),
which could be used to protect services which do not have a unique
implicit gesture associated with them.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; C.2.0
[Computer Systems Organization]: Computer-Communication
Networks—General, Security and Protection

Keywords
malware; mobile devices; NFC; context recognition; sensors

1. INTRODUCTION
Smartphones are undoubtedly becoming ubiquitous. They are

not only used as (traditional) mobile phones for phone calling and
SMS messaging, but also for many of the same purposes as desk-
top computers, such as web browsing, social networking, online
shopping and banking. Also, smartphones are incorporating more
and more sensors and communication interfaces. Such new ca-
pabilities enable smartphones with many new unique functionali-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’13, April 17-19, 2013, Budapest, Hungary.
Copyright 2013 ACM 978-1-4503-1998-0/13/04 ...$15.00.

ties that desktop computers lack. For example, many smartphones
are beginning to incorporate Near Field Communication (NFC)
chips [15], which allows short, paired transactions with other NFC-
enabled devices in close proximity. The use of NFC-equipped smart-
phones as payment tokens (such as Google Wallet) is considered to
be the next generation payment system and the latest buzz in the
financial industry [4].

Due to their popularity, smartphones are becoming a burgeoning
target for malicious activities. There has been a rapid increase in
mobile phone malware targeting different smartphone platforms [9,
10, 21, 14, 19]. Newer functionalities of smartphones only make
them more attractive to malware writers. For example, the incor-
poration of NFC chips on smartphones provides malware authors
another (possibly much easier) way to deploy their attacks through
the NFC interface [20]. Especially, due to the ease with which fi-
nancial transactions can take place using NFC, it is predicted that
NFC will become a popular target for malware aiming at creden-
tial and credit card theft [11]. Indeed, a proof-of-concept Trojan
Horse electronic pickpocket program under the cover of a tic-tac-
toe game has already been developed by Identity Stronghold [2].
In this attack, the game containing the malware is downloaded and
installed on a NFC-enabled smartphone. Once activated (when the
game is played), the malware accesses the NFC chip and enables
the RFID (Radio Frequency ID) reading functionality. This reader
then surreptitiously scans tags (e.g. RF tagged credit card) around it
and reports the acquired information to the malware owner through
e-mail once a victim tag is found in proximity.

While the security community has been battling with PC mal-
ware for many years, malware detection on smartphones turns out
to be an even more challenging problem [3]. This is partially due to
the resource constraints of smartphones (especially limited battery
power). Thus, existing malware defenses for desktop computers
cannot be applied directly on the smartphone platform. Much of
the existing research focuses on optimizing desktop based defenses
for mobile phones [25, 23, 24, 6, 3].

In practice, to protect mobile phones from malware attacks, ma-
jor mobile phone manufacturers, such as Google, Apple, and Nokia,
employ permission models to prevent malware from being installed
at the first place. However, this approach relies upon user diligence
and awareness, while most computer users lack these traits in prac-
tice. Instead of relying on user permissions, smartphone manufac-
turers also rely upon application review before releasing to people
for download. However, application review process can be cum-
bersome and prone to human error [3].

1.1 Motivation and Rationale
We argue that existing malware defenses, without considering

the special characteristics of smartphone malware and that of smart-

phones themselves, might not be sufficient to detect sophisticated
malware, such as the pickpocket malware targeting NFC mentioned
previously.1 First, the pickpocket malware [2], under the cover
of tic-tac-toe, is quite stealthy. Its surreptitious scanning may not
cause substantial changes (such as sharp increase in the number
of emails sent or in power consumption) to the normal behavioral
profile and therefore behavioral detection schemes will not be ef-
fective. Moreover, most existing malware detection schemes em-
ploy a posteriori approach. That is, malicious attacks are detected
after they took place as traces need to be collected and trained be-
fore they can be compared with profiles to find abnormalities. Be-
cause of the sensitive (financial) nature of the NFC service, it is
quite risky to adopt such a posteriori detection approach. Instead,
it is desired to develop a preventive approach which can constantly
monitor, identify, and then stop such potentially malicious activity
before it is launched so as to minimize damage or loss.

This motivates us to design a novel approach for malware pre-
vention through contextual awareness. Our rationale is as follows.
Smartphones are personal devices. That is, the end user is a human
being. Thus, (legitimate) access to sensitive/valuable services such
as premium calls, SMS or NFC usually involves different types of
human activities such as dialing a phone number, typing a mes-
sage, or clicking an application icon on the screen (to execute the
application). In contrast, one common pattern followed by mal-
ware found on mobile phones is that it attempts to access sensitive
services without the user’s awareness and authorization (thus user
activity is very unlikely to be involved). Therefore, one way to de-
tect such unauthorized, thus potentially malicious behavior, is to
validate whether an action is initiated by pure software or purpose-
fully by a human user.

Since legitimate access to sensitive services usually involves dif-
ferent types of hand movements, we explore the use of gestures
to differentiate between pure software and human-initiated activi-
ties. In particular, in this paper, we propose Tap-Wave-Rub (TWR),
a lightweight malware detection mechanism for smartphones based
on intuitive human gesture recognition, using sensors already avail-
able on current smartphones with little or no additional user in-
volvement.

The proposed gesture-based detection mechanism serves as an
extension to the currently adopted permission model used by major
smartphone OSs. That is, whenever a sensitive service is requested,
a particular gesture needs to be detected (to make sure it is a human
generated activity) before the request can be granted. Otherwise,
the activity is very likely generated by malware. As gesture de-
tection is enforced every time a sensitive request is received, the
proposed mechanism provides continuous monitoring of sensitive
resources and services from unauthorized access attempts by mal-
ware. We note, the latest Android Jelly Bean 4.2 has an added secu-
rity feature, Premium SMS Confirmation, that includes a giant list
of premium shortcodes for each country and alerts a user anytime
an app tries to send a message to a shortcode [1]. Our TWR per-
mission model follows a similar approach but the security decision
is based on presence or absence of gestures.

1.2 Our Contributions
The main contributions of this paper are summarized as follows.

1. We propose TWR, a novel approach for malware prevention
with an exclusive focus on the smartphone platform based on

1Throughout the paper, we will center our malware mitigation de-
sign based on properties observed from the pickpocket malware
[2]; however, our approaches, being fundamental in nature, will be
applicable to a broad range of future malware.

intuitive gesture recognition. As part of this system, we pro-
pose a implicit light-weight phone tapping detection mecha-
nism based on accelerometer data, which is geared for NFC
applications where a user is usually required to tap her phone
with another device.

2. We outline how Tap-Wave-Rub can reside within the kernel-
level middle layer between sensitive services and applica-
tions trying to access these services, and be integrated specif-
ically with the existing Android permission model. This TWR-
enhanced permission model provides continuous enforcement
of access control to sensitive resources and services even af-
ter an application is installed on the platform.

3. To evaluate our approach, we conduct experiments to simu-
late the behavior of malware and normal user usage activity.
Our experiment results show that the proposed mechanism
can successfully detect malicious attempts to access sensi-
tive services with high detection rates, while imposing mini-
mal usability burden.

4. As part of the TWR framework, we also explore lightweight
explicit gestures based on proximity sensor data, that could
broadly appeal to many applications (e.g., SMS). These in-
clude tapping or rubbing a finger near the top of phone’s
screen or waving a hand close.

2. RELATED WORK
The most closely related work to ours is the one proposed in

[5]. It shares similar philosophy as ours. It utilizes whether there
are hardware interruptions to differentiate pure software initiated
action and human initiated action [5]. It aims at detecting mal-
ware specifically targeting SMS and audio services. These services
usually start with user’s pressing or touching the keypad or touch-
screen which generate hardware interruptions for each key/screen
press event. A purely software generated activity (or malware gen-
erated activity), on the other hand, will not explicitly generate a
hardware interrupt. Although this approach is believed to be effec-
tive for malware detection, it cannot help detect a more sophisti-
cated malware such as the pickpocket malware. This is because the
pickpocket malware gets activated by user’s playing the tic-tac-toe
game, which already involves touch screen activity that can gener-
ate hardware interrupts. The difference between [5] and our work
can be summarized as follows. [5] attempts to check whether there
is (any) user activity whereas our goal is to check whether there
is a special user-aware activity. So our approach provides more
fine-grained access control to sensitive services and thus can detect
even sophisticated malware.

Another work that parallels to ours was recently presented in
[22]. It proposes an approach of user-driven access control by
granting permission to the application when user’s permission grant-
ing intent is captured. It introduces access control gadgets (ACGs)
which are UI elements exposed by each user-owned resource for
applications to embed. The user’s authentic UI interaction with
corresponding ACG grant the permission to an application to ac-
cess the corresponding resource. A fundamental difference be-
tween [22] and our work is that the design proposed by [22] grants
the permission to an application when user’s authentic UI inter-
action with corresponding ACG is captured whereas our design
grants permission to an application when a specific user gesture
(tapping/waving) is captured. The design proposed by [22] not only
requires kernel level changes but also necessitates application level
modifications. It also requires Resource Monitor (RM) to be incor-
porated for each resource such as the device drivers. Moreover, it

requires additional composition ACG (C-ACG) along with compo-
sition RM if an application requires different resources to be ac-
cessed/used. Our work, in contrast to [22], has an advantage in that
it neither requires application level changes nor requires resource
monitor to be added for each resource. Note that if there are many
resources that can be used by an application, then the number of C-
ACG and C-RM will become extremely large. Another advantage
of our work over [22] is that our design supports “services” (such
as NFC) which do not have any specific UI elements or ACGs as-
sociated with them. For the approach of [22] to work with services
like NFC, additional ACG for UI interaction will need to be added,
which will significantly hamper the usability of such services. In
contrast, in our case, implicit permission granting intent is acquired
by capturing the tapping gesture.

Gesture recognition has been extensively studied to support spon-
taneous interactions with consumer electronics and mobile devices
in the context of pervasive computing. Due to the uniqueness of
gestures to different users, personalized gestures have been used for
various security purposes. Gesture recognition has been used for
user authentication to address the problem of illegal use of stolen
devices [12, 7]. [18] reports a series of user studies that evalu-
ate the feasibility and usability of light-weight user authentication
based on gesture recognition using a single tri-axis accelerome-
ter. Gesture recognition is also used to defend against unautho-
rized reading and Ghost-and-Leech relay attacks in RFID systems
[8, 13].

3. BACKGROUND

3.1 Threat Model
In our model, we assume that the mobile phone is already in-

fected with malware. As in the pickpocketing attack of [2], the
malware could reside within a benign looking application (e.g.,
a game) which the user may have downloaded from an untrusted
source. Our model covers a broad range of malware and does not
impose any restriction on malware behavior except that an action
from the malware is not human-triggered. For example, the mal-
ware may want to access a service or resource (such as NFC, SMS
or GPS) available on the phone itself, or to communicate with an
external entity, such as an attacker-controlled remote server (bot-
master).

We assume that the OS kernel is healthy and immune to malware
infection. In particular, the malware is not able to maliciously al-
ter the kernel control flow. Also, the phone hardware is assumed
to be malware-free. Specifically, we assume that the malware can
not manipulate the input to, and output from, the phone’s on-board
sensors.

We do not impose any restriction as to how frequently the mal-
ware attempts to access a given service. However, in order to re-
main stealthy, constantly attempting access would not be feasible
for the malware, and rather random or periodic sampling is ex-
pected.

In addition to the user space level control of the phone, the mal-
ware may collude and synchronize with an entity in close physical
proximity of the phone (and its user). This external entity may at-
tempt to manipulate the physical environment in which the phone
is present or interfere with the user per se. We do not, however, al-
low this attacker to have physical access to the phone. That is, if the
attacker has physical access to the phone, then he can lock/unlock a
resource just like the phone’s user. In other words, our mechanisms
are not meant for user authentication and do not provide protection
in the face of loss or theft of phone.

3.2 Design Goals
For our malware prevention approach to be useful in practice, it

must satisfy the following properties:

• Lightweight-ness: The approach should be lightweight in
terms of the various required resources available on the phone,
such as memory, computation and battery power.

• Efficiency: The approach should incur little delay. Other-
wise, it can affect the overall usability of the system. We
believe that no more than a few seconds should be spent ex-
ecuting the approach.

• Robustness: The approach should be tolerant to errors. Both
the False Negative Rate (FNR) and False Positive Rate (FPR)
should be quite low. A low FNR means that a user would,
with high probability, be able to execute an application (which
accesses some sensitive services) without being rejected. Low
FNR also implies a better usability. On the other hand, Low
FPR means that there should be little probability to grant ac-
cess to a sensitive service when a user does not intend to do
so. Low FPR clearly implies a little chance for malware to
evade detection.

• Usage Model Consistency: The solution should require lit-
tle, or no change, to the usage model of existing smartphone
applications. Ideally, if the use of a particular phone service
can be commonly associated with a particular (unique) ges-
ture (e.g., phone tapping for NFC), this gesture may be used
to specially protect the said service. In this case, no changes
to the adopted usage model will be necessary. It is also pos-
sible that there is no unique gesture pattern that can be found
to use a certain service (e.g., Bluetooth). In such a situation,
an intuitive gesture template can be associated with that ser-
vice and a user will be required to explicitly perform the hand
movements defined by that gesture. In this case, only minor
changes to the adopted usage model will be imposed.

4. TWR-ENHANCED PERMISSION MODEL
Permission models have become very common on smartphone

operating systems to provide access control to sensitive services
for installed third party application. The Android platform has the
most extensive permission system and poses to become a market
leader. Thus, we base the design of our TWR system on the An-
droid platform.

The idea of the TWR system is to add another layer of permission
check before the original Android permission check. As stated in
Section 3.1, we assume the adversary is not able to maliciously al-
ter the kernel control flow. So gesture detection forms a trusted path
with the OS. Intercepted permission requests are handled by the five
components in the TWR’s architecture: TWR PermissionChecker,
TWR GestureManager, TWR GestureExtractor, TWR TemplateCre-
ator, and TWR GestureDatabase. The architecture of TWR is de-
picted in Figure 1. In the following paragraphs, we present the role
of each TWR component by describing the possible interaction be-
tween them and the outside world.

The TWR PermissionChecker stands in front of the original An-
droid Permission check. When an application initiates a request
to access a sensitive service, the request is intercepted by TWR
PermissionChecker. This component interacts with TWR Gesture-
Manager to check whether the requested service is protected by
a certain gesture. If not, the request is forwarded to the Android
Permission Check as usual. Otherwise, TWR GestureManager in-
teracts with the TWR GestureExtractor to begin collecting gesture

TWR

PermissionChecker

Android

Permission Check

Application

TWR

GestureManager

TWR

GestureExtractor

TWR

TemplateCreator

TWR

GestureDatabase

User

TWR System

Android Middleware

Kernel

Applications

Figure 1: The TWR Architecture

data (tapping, rubbing, or waving in this paper). The captured data
is then sent to the TWR GestureManager for further process.

Here we distinguish between two types of gesture recognition:
user-dependent and user-independent. As their names suggest, a
gesture is user-dependent if there is significant variation among
gesture data from multiple participants for the same predefined ges-
ture; while a gesture is user-independent if either there is no ap-
parent difference or the recognition process does not differentiate
among user data from multiple participants. Our phone tap gesture
recognition is user-dependent as it captures the user’s own features
of the tapping movement. Given that users can hold a phone in
different ways and use different forces to tap, the phone tap ges-
ture is thus user-dependent. Our hand wave or finger tap/rubbing
recognition scheme is user-independent as it infers user activity by
checking whether a special location (in our context, the place where
the proximity sensor is located) is touched or not (instead of the po-
tentially biometric feature of human movement).

For user-dependent gesture recognition, we usually need to cre-
ate a gesture template which is used as a reference in the actual
recognition stage. The user can interact with the TWR Template-
Creator to register a new gesture template, to update and delete
exiting gesture templates. TWR TemplateCreator is an Android
application which allows interaction between TWR and the user.
When the user creates, deletes, or modifies the gesture informa-
tion, it needs to retrieve and store the information to TWR Gesture-
Database via TWR GestureManager. TWR GestureManager is the
only component that has access to TWR GestureDatabase.

So depending on the type of gesture recognition scheme (user-
dependent or user-independent), the TWR GestureManager pro-
cesses the gesture data from TWR GestureExtractor differently. If
the gesture is user-dependent, it compares the similarity between
the newly captured data with the corresponding gesture template
stored in the TWR GestureDatabase. If the gesture is user-independent,
the TWR GestureManager determines directly whether a gesture is
performed or not by utilizing information in the captured data with-
out the help of a template. In either case, if a required gesture is
detected, the request is forwarded to Android Permission Check for
further check. Otherwise, the request for service access is rejected.

5. TWR GESTURE DETECTION
As we mentioned in Section 2, the use of hardware interruption

to differentiate between pure software initiated activity and human
initiated activity is not effective to prevent malware hidden under
the cover of a victim app, since activating the victim app already
involves keypad click or screen touch which can generate hardware
interrupts. This motivates us to use app-specific user events to dis-
tinguish between hidden malware and an app initiated by a human
being. That is, instead of simply using general key/screen press

events to infer human activity, we try to recognize whether it in-
volves the right activity a user needs to do to access a sensitive
service, such as the access to NFC.

A smartphone is a personal hand-held device installed with a
lot of apps. Most of the time, these apps are activated by specific
phone/hand movements. For example, when a user wants to place a
call, she needs to unlock the screen, activates the phone app, inputs
the number (or clicks on a name in the contact list), and then puts
the phone near the ear to start the call. Also, to use the NFC to scan
a smart poster, a user needs to unlock the screen, activates the NFC
reader app, and taps the phone on the smart poster to read infor-
mation. Since “tapping” (touching the phone against an RFID tag,
or another NFC device) is a gesture which users commonly need
to perform to use the NFC functionality, as an illustrative example,
we can use tapping to determine whether an NFC access is human-
initiated or not. Intuitively, tapping on a smart-poster should be
different from other user phone activities (such as keyboard click
or screen touch) and user physical activities (such as walking or
running).

One advantage of this tapping approach is that it does not require
any additional user activity besides what is being used commonly,
and thus transparently recognizes user activity when a user taps a
smart poster to obtain information. However, it may exhibit false
positive rates and not fully prevent the pickpocket malware activa-
tion since normal user activities (such as playing the game) may
generate motions similar to tapping. To achieve higher prevention
rate, we can try other intuitive user-aware gestures similar to tap-
ping, such as “tapping twice” or “tapping thrice” in succession.

To recognize tapping, we utilize the on-board accelerometer data.
An accelerometer sensor measures the forces applied to the phone
(minus the force of gravity) on the three axes: x, y, and z. Let
(ax, ay, az) denote the values corresponding to the 3 axes from the
accelerometer.

Our detection algorithm consists of two phases: training phase
and recognition phase. In the training phase, a user performs the
target action (tapping) multiple times, and accelerometer data of
the action is recorded and processed to generate a tapping template.
The template serves as a reference to be compared later with real-
time user movement data: a match indicates the recognition of user
tapping activity; otherwise, it is inferred that either there is no user
activity or the activity is not the “valid” user activity to grant NFC
access.

After the training phase, the system compares a newly observed
movement with the template. The system records the accelerome-
ter data, from the moment the user activates the NFC reader app,
until she taps on a smart poster. To recognize tapping, the system
computes the cross-correlation C of the acceleration data A against
the template T , both of size n data points as shown in Equation 1.

The cross-correlation C computed from Equation 1 when com-
paring two time series is a real value, representing a similarity
measure. The higher the value of C, the higher the similarity be-
tween the two series. The maximum value is obtained when the
two series under comparison are identical. A movement is consid-
ered a valid tapping activity when the computed cross-correlation
C exceeds a certain cross-correlation threshold which is usually
obtained through empirical study.

C(A, T) =

∑n
i=1(axi − āx)(Txi − T̄x)√∑n

i=1(axi − āx)2
√∑n

i=1(Txi − T̄x)2

=

∑n
i=1(ayi − āy)(Tyi − T̄y)√∑n

i=1(ayi − āy)2
√∑n

i=1(Tyi − T̄y)2

=

∑n
i=1(azi − āz)(Tzi − T̄z)√∑n

i=1(azi − āz)2
√∑n

i=1(Tzi − T̄z)2
(1)

where āx denotes the means of time series axi for i ∈ [1, n] (others
follow the same notation).

Here we describe one way to determine the cross-correlation
threshold. Suppose we have m traces of tapping movements T1,
..., Tm. The threshold CT can be estimated as the minimum cross-
correlation between any two series Ti and Tj (i, j ∈ [1,m] and
i ̸= j). That is:

CT = minm
i,j=1(C(Ti, Tj)) (2)

The aforementioned phone tapping detection mechanism is geared
for NFC applications. Unlike NFC, most other services/resources
on the phone may not be associated with a unique implicit ges-
ture. In such situations, an explicit human involvement would be
necessary. As part of the TWR framework, we have also designed
and implemented lightweight explicit gestures based on proximity
sensor data, that could broadly appeal to many applications (e.g.,
SMS). These include tapping or rubbing a finger near the top of
phone’s screen or waving a hand close. We note the design of
an explicit gesture detection scheme is not trivial. The challenge
is to keep the gestures very simple for the users to perform, and
lightweight for the system to identify. We report the details of our
explicit gestures in the extended version of this paper [16].

6. IMPLEMENTATION AND EVALUATION
To evaluate the feasibility of the TWR approach for malware pre-

vention, we developed a prototype application on the Android plat-
form. The phone tapping detection scheme was implemented and
installed on a Google Nexus S Android phone. This Nexus phone
comes equipped with NFC chip, therefore a good target device for
an eventual deployment of our approach.

In this section, we report on evaluation of tapping based user
activity recognition scheme outlined in Section 5. This scheme is
specially designed to protect against malware targeting NFC read-
ing services, since tapping is a natural hand movement which a user
needs to perform to use the reader function of NFC.

Since “tapping” (touching the phone against an RFID tag, or an-
other NFC device) is a very simple hand movement, we hypothe-
size it might be confused with other user movements such as those
users perform when they play games, and thus have higher false
positive rate, FPR (or lower prevention rate). In a hope to achieve
higher prevention rate, we also experiment with two other intuitive
user-aware gestures similar to tapping: tapping twice and tapping
thrice in succession. We call these three tapping gestures as “tap-
ping once”, “tapping twice”, and “tapping thrice”, respectively.

First, to determine the cross-correlation detection threshold, we
collected 30 traces of accelerometer data for each tapping gesture.
Each of our trace contains 100 data points and is recorded over a 2-
second time period (we wanted our schemes to be efficient). Each
trace is then used as a template, which is compared with all the
other 29 traces to calculate a serial of C values. The smallest C
value is chosen as the threshold value. This threshold value is then
stored with the corresponding tapping template and a matched pos-
ture needs to yield a C value larger than this threshold. These traces
were collected by the experimenter while performing NFC tapping
gesture 30 times. Such data collection and testing methodology
is in-line with related prior security work, e.g., Secret Handshakes
[8]. Our methodology captures a realistic usage scenario whereby
each user can be trained “once by their phone” and can create their
template, e.g., when they purchase the phone.

We first test the performance of the three tapping gestures to
identify which one can have higher recognition rate (thus lower
false negative rate, FNR). To do this, we collect a total of 150 traces
for each tapping gesture, 30 traces every day for 5 days. We then
use the template and the threshold calculated above to determine
the recognition rate. The successful recognition rate is listed, in the
form of a confusion matrix, in Table 1. It shows that “tapping once”
achieves high recognition rate 94.67% (or a low FNR 5.33%) com-
pared to the other two tapping gestures.

We next test the performance of the three tapping gestures to
identify which one is the least to be confused with other user or
phone movements and thus has low FPR. It is important to evaluate
the FPR. If a tapping gesture can be very similar to a certain other
movement (accidental or manipulated by an attacker), the malware
may circumvent the gesture detection process.

To determine the FPR, we compare tapping postures with many
phone/user movements. These movements might be just normal
user activities, or activities coerced by a nearby attacker. They
include user movements such as: walking, walking stairs, screen-
touch activities (text messaging and surfing Internet), phone-moving
activity (motion gaming and picking up calls), as well as, the sce-
narios where phone is left still. For each movement, we also collect
a total of 150 traces, 30 traces every day for 5 days. The error rates
are all listed in Table 1.

Our experiment result shows “tapping once” is very unlikely to
be confused with walking, walking stairs, still, and screen-touch
activities such as text messaging or Internet browsing. However,
it might occasionally be confused with phone motion caused when
the user plays game or picks up a phone call with a false positive
rate of 2%. “tapping twice” and “tapping thrice”, on the other hand,
are very resilient to phone motions but they resemble motions when
a user walks on stairs. Nevertheless, all achieve satisfying low false
positive rate.

One potential reason why the false positive rate is low might be
that tapping is a type of user-aware movement. When performing
such a gesture, the user is believed to be aware of her hand move-
ment. So gestures are performed in a more-or-less controlled way,
e.g., the phone is always held in the similar way when a user per-
forms tapping. In non-user-aware movements, on the other hand,
the phone can be tilted in any position. The reference template
is usually collected in a reference coordinate system. However,
once the phone is tilted, movement data collected from the de-
vice is no longer in the reference coordinate system and the cor-
responding movement will not be detected correctly. In this way,
user-aware gesture is very unlikely to be similar with user-unaware
movements, and thus has low false positive rate. Previous studies
on gesture recognition also suggest certain gestures can be quite
unique and different from other gestures [8, 17]. So tapping can be

Table 1: Tapping Detection Results (rates at which a gesture shown on each row matches with gesture/activity shown on each column

Tapping Tapping Tapping Walking Walking Still Screen-touch Phone
Once Twice Thrice Stairs Activities Movement

Tapping Once 94.67% NA NA 0% 0% 0% 0% 2%
Tapping Twice NA 92.67% NA 0% 1.33% 0% 0% 0%
Tapping Thrice NA NA 96.67% 0% 5.33% 0% 0% 0%

distinguished from other user-aware movements such as “picking
up the call”.

Our experiment result, contrary to our hypothesis that “tapping
once” may have high false positive rate, shows that “tapping once”
actually achieves both high recognition rate and low false positive
rate, and has a performance comparable to “tapping twice” and
“tapping thrice”. However, “tapping once” outperforms the other
two tapping gestures in term of efficiency, and has better usability
since it does not require any change to the usage model of NFC.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a lightweight permission enforce-

ment approach – Tap-Wave-Rub (TWR) – for smartphone malware
detection and prevention. TWR is based on simple human ges-
tures that are very intuitive but less likely to be exhibited in users’
daily activities. Specifically, we presented the design of aphone
tapping detection based on accelerometer data. This mechanism is
geared for NFC applications, which usually require the user to tap
her phone with another device. In addition, we present the TWR
Android permission model, the prototypes implementing the un-
derlying gesture recognition mechanisms, and a variety of novel
experiments to evaluate them. Our results suggest the proposed ap-
proach could be very effective for malware prevention, with quite
low false positives and false negatives, while imposing little to no
additional burden on the users. The false negatives are expected
to further reduce significantly as users become more familiar with
the underlying gestures, especially since they are quite intuitive. In
addition, the false positives can also be carefully avoided in most
cases, for example, by detecting the orientation of the device. Our
future effort will be focused on realizing the TWR approach in
practice and further evaluate it with a wide range of smartphones
and smartphone users.

Acknowledgements: We thank William Enck and WiSec’13 anony-
mous reviewers for their thoughtful feedback.

8. REFERENCES
[1] R. Amadeo. Exclusive: Android 4.2 alpha teardown, part 2:

SELinux, VPN lockdown, and premium SMS confirmation.
Available online at http:
//www.androidpolice.com/2012/10/17/exclusive-
android-4-2-alpha-teardown-part-2-selinux-
vpn-lockdown-and-premium-sms-confirmation/, Oct.
2012.

[2] W. Augustinowicz. Trojan horse electronic pickpocket demo by
identity stronghold. Available online at
http://www.youtube.com/watch?v=eEcz0XszEic, June
2011.

[3] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
Behavior-based malware detection systems for Android. In ACM
CCSW Workshop, 2011.

[4] M. Calamia. Mobile payments to surge to $670 billion by 2015.
Available online at
http://www.mobiledia.com/news/96900.html, Jul.
2011.

[5] A. Chaugule, Z. Xu, and S. Zhu. A specification based intrusion
detection framework for mobile phones. In ACNS’11, 2011.

[6] J. Cheng, S. Wong, H. Yang, and S. Lu. Smartsiren: virus detection
and alert for smartphones. In 5th International Conference on Mobile
Systems, Applications and Services (MobiSys’07), 2007.

[7] M. Conti, I. Zachia-Zlatea, and B. Crispo. Mind how you answer
me!: transparently authenticating the user of a smartphone when
answering or placing a call. In ASIACCS’11.

[8] A. Czeskis, K. Koscher, J. Smith, and T. Kohno. RFIDs and secret
handshakes: Defending against Ghost-and-Leech attacks and
unauthorized reads with context-aware communications. In ACM
Conference on Computer and Communications Security, 2008.

[9] F-Secure. Bluetooth-worm:symbos/cabir. Available online at
http://www.f-secure.com/v-descs/cabir.shtml.

[10] F-Secure. Worm:symbos/commwarrior. Available online at http:
//www.f-secure.com/v-descs/commwarrior.shtml.

[11] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey
of mobile malware in the wild. In ACM CCSW Workshop, 2011.

[12] D. Gafurov, K. Helkala, and T. Sndrol. Biometric gait authentication
using accelerometer sensor. Journal of Computers, 1(7):51–59, 2006.

[13] T. Halevi, S. Lin, D. Ma, A. Prasad, N. Saxena, J. Voris, and
T. Xiang. Sensing-enabled defenses to rfid unauthorized reading and
relay attacks without changing the usage model. In PerCom’12, 2012.

[14] J. Han, E. Owusu, T.-L. Nguyen, A. Perrig, and J. Zhang.
ACComplice: Location Inference using Accelerometers on
Smartphones. In Proc. of COMSNETS, Jan. 2012.

[15] ISO. Near field communication interface and protocol
(nfcip-1)——iso/iec 18092:2004. Available online at
http://www.iso.org/iso/catalogue_detail.htm?
csnumber=38578, 2004.

[16] H. Li, D. Ma, N. Saxena, B. Shrestha, and Y. Zhu. Tap-wave-rub:
Lightweight malware prevention for smartphones using intuitive
human gestures. Extended Technical Report, Available online at
http://arxiv.org/abs/1302.4010, Feb. 2013.

[17] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan.
uWave: Accelerometer-based personalized gesture recognition and
its applications. Pervasive and Mobile Computing, 5(6):657–575,
December 2009.

[18] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. User
evaluation of lightweight user authentication with a single tri-axis
accelerometer. In MobileHCI’09, 2009.

[19] P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp)iPhone:
decoding vibrations from nearby keyboards using mobile phone
accelerometers. In Proc. of ACM CCS, 2011.

[20] C. Mulliner. Vulnerability analysis and attacks on NFC-enabled
mobile phones. In 1st International Workshop on Sensor Security
(IWSS) at ARES, 2009.

[21] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. ACCessory:
Keystroke Inference using Accelerometers on Smartphones. In Proc.
of HotMobile), Feb. 2012.

[22] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. In 33rd IEEE Symposium on
Security and Privacy (Oakland 2012), 2012.

[23] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz,
K. Yksel, S. Camtepe, and A. Sahin. Static analysis of executables
for collaborative malware detection on Android. In ICC 2009
Communication and Information Systems Security Symposium, 2009.

[24] A. S. Shamili, C. Bauckhage, and T. Alpcan. Malware detection on
mobile devices using distributed machine learning. In 20th
International Conference on Pattern Recognition (ICPR’10), 2010.

[25] D. Venugopal. An efficient signature representation and matching
method for mobile devices. In WICON’06, 2006.

